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SUMMARY

Determination of the relation between the bulk or rheological properties of a

particle suspension and its microscopic structure is an old and important problem in

physical science. In general, the rheology of particle suspension is quite complex, and

the problem becomes even more complicated if the suspending particle is deformable.

Despite these difficulties, a large number of theoretical and experimental investiga-

tions have been devoted to the analysis and prediction of the rheological behavior of

particle suspensions. However, among these studies there are very few investigations

that focus on the role of particle deformability.

A novel method for full coupling of the fluid–solid phases with sub–grid accuracy

for the solid phase is developed. In this method, the flow is computed on a fixed

regular ‘lattice’ using the lattice Boltzmann method (LBM), where each solid particle,

or fiber, is mapped onto a Lagrangian frame moving continuously through the domain.

The motion and orientation of the particle are obtained from Newtonian dynamics

equations. The deformable particle is modeled by the lattice–spring model (LSM).

The fiber deformation is calculated by an efficient flexible fiber model. The no–slip

boundary condition at the fluid–solid interface is based on the external boundary force

(EBF) method. This method is validated by comparing with known experimental and

theoretical results.

The fiber simulation results show that the rheological properties of flexible fiber

suspension are highly dependent on the microstructural characteristics of the suspen-

sion. It is shown that fiber stiffness (bending ratio BR) has strong impact on the

suspension rheology in the range BR < 3. The relative viscosity of the fiber suspen-

sion under shear increases significantly as BR decreases. Direct numerical simulation

xv



of flexible fiber suspension allows computation of the primary normal stress difference

as a function of BR. These results show that the primary normal stress difference

has a minimum value at BR ∼ 1. The primary normal stress differences for slightly

deformable fibers reaches a minimum and increases significantly as BR decreases be-

low 1. The results are explained based on the Batchelor’s relation for non–Brownian

suspensions. The influence of fiber stiffness on the fiber orientation distribution and

orbit constant is the major contributor to the variation in rheological properties. A

least–squares curve–fitting relation for the relative viscosity is obtained for flexible

fiber suspension. This relation can be used to predict the relative viscosity of flexible

fiber suspension based on the result of rigid fiber suspension.

The unique capability of the LBM–EBF method for sub–grid resolution and mul-

tiscale analysis of particle suspension is applied to the challenging problem of platelet

motion in blood flow. By computing the stress distribution over the platelet, the

“blood damage index” is computed and compared with experiments in channels with

various geometries [43]. In platelet simulation, the effect of 3D channel geometry

on the platelet activation and aggregation is modeled by using LBM–EBF method.

Comparison of our simulations with Fallon’s experiments [43] shows a similar pat-

tern, and shows that Dumont’s BDI model [40] is more appropriate for blood damage

investigation. It has been shown that channels with sharp transition geometry will

have larger recirculation areas with high BDI values. By investigating the effect of

hinge area geometry on BDI value, we intend to use this multiscale computational

method to optimize the design of Bileaflet mechanical heart valves.

Both fiber simulations and platelet simulations have shown that the novel LBM–

EBF method is more efficient and stable compare to the conventional numerical meth-

ods. The new EBF method is a two–way coupling method with sub–grid accuracy

which makes the platelet simulations possible. The LBM–EBF is the only method

to date, to the best of author’s knowledge, that can simulate suspensions with large

xvi



number of deformable particles under complex flow conditions. It is hoped that future

researchers may benefit from this new method and the algorithms developed here.

xvii



CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Background

Fluids with large numbers of particles are integral to many industrial and biologi-

cal processes. The particles may be added to the fluid for the purpose of modifying

the fluid’s behavior as in paint; the interaction of particles may define the industrial

product, as do fibers in paper making; or the particles may perform biological func-

tions as do red blood cells and platelets. Newtonian fluids with suspensions usually

show complex rheology and non–Newtonian flow characteristics. In some situations,

the particles are deformable and make problems even more complicated. Treating

these suspending particles as rigid particles ignores important physical behavior. For

example, the effective viscosity of an actual fiber suspension is 7% to 13% larger

than the equivalent rigid fiber suspension [46, 14, 54]. Understanding the underlying

physical processes is very important in simulation and optimization of engineering

applications.

Experimental techniques have certain drawbacks in these situations and the re-

sults are also critical for understanding the basic mechanism. It is difficult to measure

the shape and deformation of deformable particles and rheological quantities such as

self–diffusivities in experiments. Most experimental studies of the rheology of fiber

suspensions have made an important contribution to the field, but the results are

very system specific. Analytical solutions for both rigid and deformable particles

are limited to dilute cases with simple and regular geometry. The existing numerical

methods such as finite volume methods (FVM) or finite element methods (FEM) have

proven too computationally expensive to perform large simulations. The “Immersed

1



boundary” and “Cartesian grid” methods can only handle rigid or high stiffness solid

suspensions, and they use artificial penalty parameters which also affect the dynam-

ics of suspensions. Regular LBM can simulate a large number of particles in the

suspension, and is easy to parallelize, but it can cause instability under certain con-

ditions. An efficient and stable numerical technique to simulate flow with

large numbers of deformable particles has not been published yet, and the

development of a novel method to simulate fluid–solid interaction, especially with

deformable suspended particles, would improve the fundamental understanding of

suspension rheology and microstructure.

It is very important to discover the relation between the bulk properties of a

suspension and its microstructure. Volume concentration is the most widely used

as a parameter in suspension of spherical particles. For fiber suspensions, however,

this parameter, fiber volume fraction (cvf= nLπD2/4), is relatively meaningless when

used alone. To classify the level of fiber concentration, this study follows Doi and

Edwards’s [38] classification of fiber concentration based on the value of nL3, where

n is the number of fibers per unit volume and L is the fiber length. In the dilute

regime when nL3 < 1, the fibers move without interference from other fibers. In

the semi–dilute regime, 1 < nL3 < L/D, where D is the fiber diameter, some fiber

contacts are possible. In the concentrated regime, nL3 > L/D, fiber–fiber interaction

is dominant. The fiber suspension parameters of relevance in this study are the fiber

aspect ratio (rp= L/D), fiber volume fraction (cvf= nLπD2/4) and fiber bending

ratio (BR), which is the non–dimensional stiffness of the flexible fiber. It is defined

by [46] and [52]

BR ≡ EY (ln2re − 1.5)

2 (µγ̇) rp4
. (1)

Here, EY is the fiber Young’s modulus, µ is the fluid viscosity and γ̇ is the shear

rate, and re is the effective aspect ratio.
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Jeffery [69] has shown that an ellipsoidal particle will rotate in an orbit. Bretherton

[18] expanded Jeffery’s solution to any axisymmetric particle and used an effective

aspect ratio re, which is equal to rp for ellipsoidal particles. For a rigid cylinder of

aspect ratio rp = L/D, the equivalent aspect ratio has been derived by Cox [32],

re = 1.24rp/
√

lnrp. For a given suspending fiber and suspending fluid, BR decreases

with increasing shear rate γ̇. When the shear rate is higher than the critical shear

rate γ̇crit, BR < 1, the suspending fiber is predicted to bend. Table 1 shows the

critical shear rate for fibers with different material, suspended in castor oil, which has

a viscosity of 5 Pa·s.

Table 1: The critical shear rate for fibers with different material, suspended in castor
oil
Fiber Material rp EY (GPa) γ̇crit (1/s)
Softwood Fibers 100 10.0 32.50
Hardwood Fibers 40 11.4 1088.56
Polypropylene 100 1.5 4.88
Nylon 100 3.0 9.75
Dacron 100 7.3 23.72
Rayon 100 26.4 85.80
Glass 100 50.0 162.49

For an axisymmetric slender particle in the Stokes flow of a Newtonian fluid, the

governing equations are given by [69]

φ̇ =
γ̇
(

re
2cos2φ+ sin2φ

)

(re2 + 1)
, (2)

and

θ̇ =
γ̇ (re

2 − 1) cosφsinφcosθsinθ

(re2 + 1)
. (3)

Integrating equations (2) and (3) yields

tanφ = retan

(

2πt

Tp

+ φ0

)

, (4)
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Figure 1.1: The spherical coordinate system for a fiber in an x, y simple shear flow.

tanθ =
Cjre

(

re2cos2φ+ sin2φ
)1/2

, (5)

respectively, where Cj and φ0 are parameters known as the Jeffery orbit constant

and phase angle, respectively. Tp is the particle rotation period. When Cj = 0, the

fiber is oriented in the vorticity direction (z–direction). As Cj increases from 0, the

orbits leave the vorticity axis and approach the flow velocity and its gradient plane

(xy–plane). When Cj = ∞, the orbit is located in the xy–plane. It is advantageous

to use Cb ≡ Cj/(Cj+1) since Cj takes values from 0 to ∞, while Cb is bound between

0 and 1. These equations show that the particle aspect ratio determines its angular

velocity at different orientation angles. Long slender particles spend most of the time

lined up in the flow direction and the ‘flip–over’ time is around 1/re of the rotation

period.

If the position, orientation and velocity of every fiber at every time step are known,

the microstructure of the fiber suspension can be described by the fiber orientation

distribution function p(Cb) and p(φ), the average number of contact points per fiber
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〈nc〉, where the angle brackets represent an average over all the fibers of the sus-

pension. Both orientation functions are equal to 0.5 if the particle orientation is

statistically isotropic.

The relevant flow parameters in this research are the Peclet number, Pe, and

the particle Reynolds number, Re= γ̇L2/ν, where ν is the fluid kinematic viscosity,

ν = µ/ρ. Due to the small size of the fiber, in most situations the particle Reynolds

number is negligible. The Peclet number for rotational Brownian diffusion is defined

as

Pe =
γ̇

Dr

, (6)

where Dr is the Brownian rotary diffusion coefficient. It has been presented by Bren-

ner [17] as

Dr =
kBT

6µVpBr

. (7)

Here kB is the Boltzmann constant (kB = 1.38 × 10−23 J/K), T is the absolute

temperature in degrees Kelvin, Vp is the volume of the suspending particle and Br is

given by

Br =
2

9

[

(

rp
lnrp

)2

(ln2rp − 1) +
3Bk

8π

]

, (8)

where Bk = 5.45 for cylinders with finite length where rp ≫ 1. It can be seen that

the Peclet number is the ratio of viscous to Brownian forces. When Pe is small,

the effects of Brownian motion are dominant, particles tend to orient randomly and

the suspension become isotropic. When Pe is large, the effects of the bulk motion

and the convection of the fluid become dominant, the effects of Brownian motion

are negligible, and particles tend to align with the flow. In the simulations the fiber

dimensions are of the order of a millimeter or larger and Pe ≃ 1014, and the effects

of Brownian motion are negligible.

The rheological properties of fiber suspensions in this study are the relative shear

viscosity, η, which is defined as effective shear viscosity µeff divided by the viscosity
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of the suspending fluid µ, and the first effective normal stress difference N1. They are

important in describing shear–induced migration of the fibers. The second effective

normal stress difference N2 is also calculated in these simulations. But it is found

that the numerical noise is too high compared to the absolute value of N2; the signal

to noise ratio is less than 0.6 in all cases and the value of N2 is an order of magnitude

smaller than N1. Therefore, no reliable results of N2 for flexible fiber suspensions

could be obtained. Experimentally measuring the effective normal stress differences

is difficult, and the deviation between different investigators is quite large.

In this study, rheological properties are directly computed based on the averaged

stress tensor in a cubic–box–shaped subdomain. The relative shear viscosity η is given

by

η ≡ µeff

µ
=

σxy

2µExy

, (9)

where Exy = γ̇/2 is the shear strain component of the strain rate tensor, E, and σxy

is the shear stress component of the stress tensor σ. The first effective normal stress

difference is given by

N1 ≡ σxx − σyy. (10)

Batchelor [10] derived the rheological properties based on the suspension fiber’s

state, since the position and the orientation of every fiber is known explicitly at every

time step. The Batchelor’s relation [10] for the contribution of the suspended fibers

to the stress in dilute suspensions without Brownian motion is given by

σB = 2µE + µfiber

(

〈pppp〉 − 1

3
In 〈pp〉

)

: E, (11)

where E is the strain rate tensor, In is the unit tensor. p= pxex + pyey + pzez is

a unit vector parallel to the fiber axis of symmetry, and ex, ey and ez are the unit

vector on the flow direction, velocity gradient direction and vorticity axis direction,

respectively. µfiber is a function of fiber concentration, orientation distribution and
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fiber aspect ratio. This relation was extended to semi–dilute regime by modifying

µfiber by Koch, Shaqfeh and coworkers [107, 75, 84].

From equation (11), it can be shown that the relative viscosity from Batchelor’s

relation ηB is

ηB =
σB
xy

2µExy

= 1 +
µfiber

µ

〈

px
2py

2
〉

, (12)

and the first effective normal stress differences NB
1 is

NB
1 = σB

xx − σB
yy = µfiberγ̇

(〈

px
3py

〉

−
〈

py
3px

〉)

. (13)

The rheological properties calculated from equations (12) and (13) depend on the

accuracy of Batchelor’s theory which requires that fibers move freely with no fiber–

fiber interactions. In this paper, we investigate suspensions from the dilute to the

concentrated regime, and all rheological properties are calculated directly from equa-

tion (9) and (10) without such restriction. The measurement is based on the average

stress tensor in the bulk of the flexible fiber suspension. Here we list equations from

Batchelor’s theory because it clearly shows the relation between the fiber orientation

distribution and the pure hydrodynamic contribution to the suspension stress. This

feature is very helpful in the following discussions for the simulation results.

Both the relative shear viscosity and effective normal stress differences are im-

portant in describing the non–Newtonian nature of fiber suspensions. The effective

normal stress difference shows the non-symmetric changes in the p(φ) distribution

function. The moments in equation (10) are all zero if the orientation distribution

function is symmetric with respect to the xz–plane. These moments are very small

and sensitive, and they are difficult to measure by experimental techniques. Bibbo

[12] confirmed that the transient normal stress difference was proportional to γ̇, but

the value of the normal force was below the sensitivity of the rheometer.

In this research, we developed a new method [122, 121] for direct numerical analy-

sis of three–dimensional deformable particle suspensions, including fiber suspensions
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in the dilute, semi–dilute and concentrated regimes. The flow is computed on a fixed

regular ‘lattice’ using the lattice Boltzmann method (LBM), where each solid par-

ticle/flexible fiber is mapped onto a Lagrangian frame moving continuously through

the domain. A flexible fiber model has been developed to simulate fibers with high

aspect ratio, efficiently. The lattice Boltzmann method for analysis of fluid flow

problems [29, 67, 88] has been extended to direct simulation of particles suspended

in fluid [78, 4, 5, 2]. In these methods, the no–slip boundary condition at the fluid–

solid interface is based on the standard “bounce–back” (SBB) rule. The interaction

boundary is represented at the mid–points of the links which are cut by the solid

particle boundary as shown in figure 1.2(a). A fluid–solid collision function is used to

account for the momentum exchange and to apply the interaction force to both fluid

and the particle.

The SBB method has been used for simulation of deformable particles with some

success. Buxton et al. [24] combine the LBM with the lattice–spring model to study

the interaction and deformation of an elastic shell with the surrounding fluid. Dupin

et al. [41] use a two–dimensional (2D) spring mesh to model elastic membranes.

MacMeccan et al. [85] use a combination of the LBM for the fluid and finite ele-

ment method for the solid domain to simulate 800 deformable red blood cells at 45%

concentration. All of these studies use the SBB boundary conditions, as this is easy

to implement in 3D deformable particle simulations. However, with SBB the solid

boundary (Red broken line in figure 1.2(a)) will not move continuously and smoothly

in space; instead it will jump from one midpoint to another. If we consider a particle

at two different time steps, t1 and t2, as shown in figure 1.3, the blue solid line is

the physical boundary of the particle, and the red broken line is the computational

fluid–solid interaction boundary based on SBB. It is obvious that the two compu-

tational boundaries are different at times t1 and t2. This causes fluctuation of the
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Figure 1.2: (a) Regular Eulerian grid for standard bounce–back (SBB) rule. (b)
Regular Eulerian grid for Interpolated bounce–back (IBB) rule. In (a) the filled
circles (•) are the fluid nodes covered by the solid, and open circles (◦) are the fluid
nodes outside the solid particle. (c) The solid Lagrangian nodes (•) and fluid Eulerian
nodes (◦) for external boundary force (EBF) method. The red broken line (· · · ) shows
the fluid–solid boundary. Note that the solid boundary nodes in the (c) are located
exactly on the fluid–solid boundary Γ.
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Figure 1.3: Computional fluid–solid boundary of SBB at two different time steps,
t1 and t2.

fluid–solid interaction force and the particle velocity. It can also cause the simula-

tion to fail at high Reynolds numbers because of the distortion near the fluid–solid

boundary. To reduce this fluctuation, one can use a finer lattice grid with more nodes

at the boundary which increase the computational time, or one can use a higher or-

der bounce back method based on interpolations. Recently, the bounce–back scheme

has been improved by using spatial linear, quadratic, and multi–reflection interpola-

tions [16, 51, 128]. Although the interpolated bounce–back (IBB) methods are more

accurate, in addition to being computationally expensive, they require at least two

or three fluid nodes between nearby solid surfaces for interpolation. This excludes

application to non-dilute suspensions of solid particles with close interaction between

the particles or between particles and system boundaries [35, 30].

In this research, A no–slip boundary condition in the LBM for stationary and

moving solid particles is implemented. The new method is based on the external

boundary force approach developed for the Navier–Stokes equation by Goldstein et al.

[53]. With the discrete external boundary force (EBF), we consider two overlapping

grid systems; a regular Eulerian grid for the fluid domain and a Lagrangian grid for

the solid domain. The no–slip boundary condition at the solid surface is applied

by adding a force density to the fluid domain to force the difference between the
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fluid and solid velocity at the boundary nodes to be zero; the counterforce acting

on the solid particles is used to update the position and velocity of the particles

based on Newtonian dynamics equations. The lattice Boltzmann equation with the

additional boundary force density in the form of a source term is solved to obtain

the updated fluid velocity. We show that this approach results in smoother fluid–

solid interaction force as compared to standard bounce–back method (SBB), and

that it is in general more stable and efficient as compared to the LBM with SBB

(with deformable particles). For example, coupling the LBM with the lattice–spring

method could cause instabilities when increasing the spring constant or reducing

∆xLSM/∆xLBM , the ratio between unit grid size of LSM and LBM [23, 24]. To

reduce this instability in LBM with SBB, one has to either increase the size of the

particle (the solid grid size) or use a finer fluid grid to increase the number of boundary

nodes – both approaches will increase the computational cost. We show that the EBF

approach presented here reduces this instability. Also in fiber simulations, to reach a

stable and accurate result in existing LBM–SBB methods, the diameter of the fiber,

D, must be about 4 to 10 times the unit lattice size, ∆xLBM [100, 102]. However in

the LBM–EBF method, D is about 0.4 to 1 times ∆xLBM . This advantage makes

EBF more efficient compared to the SBB method in fiber simulation. For example,

to simulate a fiber suspension with aspect ratio rp = 20, in the LBM–SBB method,

the fiber length L = 80, and in order to eliminate wall effects, the length of the fluid

domain has to be at least 5 times the fiber length, that is 400 × 400 × 400. But in

the LBM–EBF method, the corresponding fiber length L = 8 and the domain size is

40× 40× 40.

The presence of an external body force in the kinetic–based conservation equations

has been discussed in classical kinetic theory [82]. The connection between the source

term in the LBE and the resulting body force field in the Navier–Stokes equation has

also been discussed since the inception of the LBM two decades ago [61, 86, 21, 79,
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58]. A method based on an external boundary force at the fluid–solid interface of

the moving particle [53] to implement the no–slip boundary condition in the LBM

for simulation of deformable suspensions with a simple algorithm and no tunable

parameters is presented here.

1.2 Objective

The purpose of this research is to develop a particle–level numerical method to study

the rheology and microstructure of suspensions, especially with flexible particles.

To reach this goal, a method for direct numerical analysis of three–dimensional de-

formable particles suspended in fluid is developed. Most existing numerical methods

for fiber simulations treat the fiber as a rigid rod–like cylinder in Stokes flow. This

limits the application of these methods, especially in cases that involve fibers with

high aspect ratio or low Young’s modulus in high shear rate flow. In this new method,

the flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method

(LBM), where each solid particle is mapped onto a Lagrangian frame moving continu-

ously through the domain. Instead of the bounce–back method, an external boundary

force (EBF) is used to impose the no–slip boundary condition at the fluid–solid in-

terface for stationary or moving boundaries. The external boundary force is added

directly to the lattice Boltzmann equation. The motion and orientation of the par-

ticles are obtained from Newtonian dynamics equations. Although the EBF method

is general, in this application it is used in conjunction with a modified lattice–spring

model (LSM) for deformable particles and a flexible fiber model. The methodology is

validated by comparison of experimental and theoretical results. The calculations in

LBM and LSM are local, it can be easily programmed and runs efficiently on parallel

machines.

This research will hope to achieve the following specific aims:

i. To develop and validate the new LBM with external boundary force method for
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fluid–solid interaction in flexible particle suspensions.

ii. To determine quantitatively the effects of fiber aspect ratio, volume fraction

and fiber stiffness on the rheological properties and microstructure of flexible

fiber suspensions.

iii. To demonstrate the flexibility and applicability of the new method by simulating

thousands of deformable particles such as red blood cells (RBCs) in blood flow

through complex geometries, such as the hinge area of an artificial heart valve.

1.3 Theory and numerical techniques

Theoretical studies of suspensions usually start with modeling the motion of a single

particle in a simple flow field using basic hydrodynamic analysis; this is reviewed

and discussed in § 1.3.1. Next, the effects of fluid–particle and particle–particle

interactions on the microstructure of particle suspension are investigated. This part

of the study is focused in the dilute regime and is discussed in § 1.3.2. In the

non–dilute regime, by calculating the orientation distribution of the particles, the

contribution of suspending particles to the bulk flow is obtained based on the relation

between suspension microstructure and rheological properties. This is discussed in

§ 1.3.3.

1.3.1 Single particle

Almost all theoretical models are based on the theory of Jeffery [69], who derived the

governing equations (equation (2)–(5)) and described the motion of a single ellipsoidal

particle in a Newtonian fluid. Bretherton [18] expanded Jeffery’s solution to any

axisymmetric particle and used an effective aspect ratio re which is equal to rp for

ellipsoidal particles. The particle rotation period Tp increases with increasing ellipsoid

aspect ratio and is given by
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Tp = 2π (re + 1/re) /γ̇. (14)

There have been both theoretical and experimental studies for re. For a rigid

cylinder of aspect ratio rp = L/D, Burgers [22] used the approximation of re = 0.74rp

for infinitely long cylindrical rods. By measuring the rotation period of a single, rigid,

cylindrical fiber, Goldsmith and Mason [52] found that for fibers with rp between 20 to

115, the ratio of re/rp decreased from 0.7 to 0.53. Cox [32] derived a semi–empirical

correlation of re = 1.24rp/
√

lnrp, which agrees well with the experimental results

from Mason et al..

In the ideal situation, if Brownian motion is negligible, a rigid cylindrical particle

should rotate in a ‘tumbling’ motion. The orientation and angular velocity depend

only on the initial orientation of the particle. This means that the system is reversible,

the bulk stress of the suspension should vary periodically and only determined by

the initial configuration of the suspension and would never reach a steady state.

For a particle whose long dimension is larger than 10µm, the effect of Brownian

motion is negligible [80]. But experiments gave a different conclusion. Anczurowski

and Mason [7] and Goldsmith and Mason [52] observed that the fiber suspension

exhibits a ‘fading memory’. The suspending fiber changes its phase angle (φ0 in

equation (4)) and orbit constant (Cj in equation (5)) with different time scales. Stover,

Koch and Cohen [111] captured the orientations of fibers in a cylindrical Couette

device and measured an orbit constant correlation function which shows the rate of

memory loss. Zirnsak, Hur and Boger [132] concluded that fiber suspensions quickly

forget the initial configuration, possibly due to fiber–fiber interaction, polydispersity

of fiber aspect ratio and non–uniform shear rate. Hur [68] summarized all previous

studies and proposed that a non–Newtonian suspending fluid and the effect of external

forces may also cause ‘fading memory’. From the present study, it is found that

particle deformability is also an important factor, and flexible fibers forget the initial
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configuration much faster than rigid fibers that have same aspect ratio. More details

and discussion can be found in § 3.

1.3.2 Dilute regime

The dilute suspension theories contain the following assumptions:

i. The fiber volume fraction, cvf , is very small, so there is no hydrodynamic inter-

action between particles, or between particle and wall.

ii. The fiber length is much smaller than any flow dimension, and the fiber aspect

ratio rp is uniform.

iii. The effects of inertia, Brownian motion and external body forces are negligible.

iv. The suspending fluid is uniform, incompressible and Newtonian.

From continuum theory, the rheological properties of dilute suspension should con-

tinually oscillate and never reach a steady state. The bulk properties of the suspension

depend on fiber volume fraction cvf , aspect ratio rp and fiber orientation distribution.

Many researchers have derived different models; their results are summarized here.

Jeffery [69] quantitatively described the viscosity change due to the suspending

particles. It has been shown that the energy dissipation depends on the initial par-

ticle orientation. Guth [59] derived a theoretical expression for rigid fibers in dilute

suspension. For the case of minimum energy dissipation, with particles oriented in

the vorticity direction (z direction as shown in figure 1.1 and Cj = 0), the relative

shear viscosity was the same as Jeffery’s result:

η = 1 + 2cvf . (15)

For the case of maximum energy dissipation, where particles are rotated in the

shear plane (xy–plane as shown in figure 1.1 and Cj = ∞), it was

η = 1 + 2cvf

(

1 +
rp/4

ln2rp − 1.5

)

. (16)
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Burgers [22] investigated the viscosity for rigid elongated ellipsoids. For suspend-

ing particles having random orientation distribution (isotropic), the result obtained

was

η = 1 + 2cvf
rp/(3π)

ln2rp − 1.8
. (17)

For the case of maximum energy dissipation, the viscosity increases and it was

given by

η = 1 + cvf
rp/3

ln2rp − 1.8
. (18)

Hinch and Leal [63] found that the relative viscosity for the dilute suspension of

elongated ellipsoids is a function of the Peclet number Pe. They found that even

with weak Brownian mnotion, the suspension will ‘forget’ the initial configuration

and reach a steady state. If Brownian motion is very weak, then

η = 1 + cvf
0.315rp
lnrp

. (19)

They also found that the first normal stress difference ∼ O(Dr) at steady state

[64], where Dr is Brownian rotational diffusivity in equation (6) and Dr ≪ 1. In

the following calculation [65], for suspending fibers having aspect ratio of 5, the first

normal stress difference was less than 1/3 of the shear stress generated by fibers, the

second normal stress difference was negative and the absolute value is one order of

magnitude smaller than the first. If the fiber has a very large aspect ratio, rp → ∞,

the first normal stress difference for dilute rigid fiber suspension is given by [63]

N1 = cvfµDrr
4

p/4lnrp. (20)

A detailed discussion of the motion of rigid, neutrally buoyant, axisymmetric

particles in Newtonian fluid was given by Brenner [17]. He found that the dynamics

of any rigid, arbitrary axisymmetric particle only depends on five non–dimensional

parameters, which are only determined by the shape of the particle. Hinch and Leal

[65] obtained similar results, and they named these parameters the ‘shape factor’. In
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their research, they also calculated the value of these non–dimensional parameters

for ellipsoids with different aspect ratios. Brenner gave the viscosity of rigid fibers,

dilute suspensions for the cases of dominant Brownian motion, intermediate Brownian

motion and weak Brownian motion. When the Peclet number is very small, Pe ≪ 1,

and Brownian motion is dominant, Brenner obtained the same result as Simha [110]

and Kuhn and Kuhn [77], the viscosity is given by

η = 1 + cvf

[

2− B2 + 2B3 −
(B0Pe)

2

1260
(12B2 + 6B3 + 35Bn/B0)

]

. (21)

In the case of intermediate Brownian motion, 1 ≪ Pe ≪ re, the viscosity is given

by

η = 1 + cvf

[

2 +
15

4
(
1

B0

− 1)B2 −
(

0.822B2 + 5.388(
1

B0

− 1)B3

)

/Pe1/3
]

. (22)

And for weak Brownian motion, re ≪ Pe, the relative viscosity becomes

η = 1 + cvf

[

2− 15

4

(

B1(1−
1.792

re
)− B2

B0

(1− 3.0524

re
)− r2e

B0Pe
2
(3B2 + 4B3)

)]

.

(23)

Here

B0 = 1− 3Bklnrp
4πr2p

,

B1 =
2
5 − 6ln2rp

5r2p
,

B2 =
2r2p

45 (ln2rp + ln2− (17/6))
,

B3 =
B0

15

[

(

rp
lnrp

)2

(ln2rp − 1)− 3Bk
8π

]

,

Bn = 2
15

[

(

rp
lnrp

)2

(ln2rp − 1)− 3Bk
8π

]

,

(24)

and Bk = 5.45 for cylinders having finite length.

Brenner [17] also derived normal stress differences for dilute suspensions of ax-

isymmetric rigid particles. Under the same conditions as Hinch and Leal [63], when

Brownian motion is weak and the suspending cylindrical fibers have large aspect ratio,
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the first normal stress difference is given by

N1 =
5cvfkBT

2VpBr

[(

1− 4.2142

re

)

3B2 + 4B3

B0

−
r2pB2(1 + B0)

8B0

]

, (25)

where Vp is the volume of the suspending particle and Br is given in equation (8), it

is also found that N2 ∼ −N1/7.

Berry and Russel [11] also derived the relative viscosity for dilute suspensions of

rigid long rods with Pe ≪ 1 and 1 ≪ rp. The equation is

η = 1 + ηintcvf +
2

5
(1− 0.0142Pe2)η2intc

2

vf , (26)

where ηint is the intrinsic viscosity and is given by

ηint =
8r2p

45ln2rp
(1− 0.02Pe2). (27)

1.3.3 Non–dilute suspension

In this regime, fiber–fiber contact exists and fibers are not free to rotate. There

are three critical concentrations for non–dilute suspensions of large aspect ratio fibers

(rp >> 1). Mason [87] proposed that fibers can not rotate freely when nL3 > 6/π, The

fiber–fiber interaction can cause the shear viscosity to increase significantly. Doi [37]

found that suspending fibers have to be aligned in a common direction when nL3 > rp,

and can not have random orientation distribution. Meyer and Wahren [91] mentioned

that for fiber suspensions, when nL3 > 432, every suspending fiber has at least

three contact points with other fibers and forms a transient network structure. The

average size of the fiber cluster depends on the fiber concentration, aspect ratio and

shear rate. This means that fiber suspension in this regime may have shear thinning

behavior. In the current research, we are focused on fiber suspensions that have

concentrations much smaller than the third critical concentration. From the results

that we obtained in the preliminary simulations, we did not observe shear thinning

behavior for dilute/non–dilute suspensions that have particle Reynolds number, Re =

γ̇L2/ν, from 0.001 to 0.1.
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Blakeney [14] measured the viscosity of Nylon fiber suspensions and gave the

relation as

η = 1 + B4cvf +B5(B4cvf )
2, (28)

where B4 is a non–dimensional parameter determined by the length, aspect ratio and

orientation of the suspending fiber. Based on Burgers [22] theory,

B4 =
2rp

3π(ln2rp − 1.8)
. (29)

The second order term in equation (28) accounts for fiber–fiber interaction, it is

only considered when the volume concentration is higher than the ‘critical concentra-

tion’ and Blakeney observed B5 = 0.73 for purely hydrodynamic fiber interactions.

Based on experiments, Carter [25] claimed that in semi–dilute rigid fiber suspen-

sions with large fiber aspect ratio, the first normal stress difference N1 should be

proportional to the shear rate γ̇ and the suspending fluid’s viscosity µ. Equation (30)

is derived based on Jeffery’s maximum energy dissipation, Cj = ∞ [69] and assumes

that fiber–fiber collisions are the major reason for non–zero normal stress differences

in simple shear flow. The first normal stress difference is given by

N1 = Kcµγ̇
cvfrp

3/2

ln(2rp)− 1.8
, (30)

where Kc is a constant and must be determined experimentally. Different researchers

applied Carter’s model to their normal stress measurements [25, 73, 54, 132, 98, 106,

71]. These experimental data fell within a band for Kc that ranged from 0.04 to 0.32,

although no clear relation between Kc with variables such as fiber volume fraction

and aspect ratio has been discovered.

Doi and Edwards [38, 39] investigated the effect of Brownian motion for semi–

dilute suspensions of rigid rods. They used average bulk suspension properties to

model the effect of fiber–fiber interaction. The rotary diffusivity is averaged over

all fiber orientations. It was found that in a non–dilute suspension, the rotational
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diffusivity DrDE is smaller than the diffusivity in the dilute suspension by a factor of

(nL3)2. When Pe < 1, the relative zero–shear viscosity, ηDE0 = lim
γ̇→0

η, was given by

ηDE0 =
nkBT

10µDrDE

, (31)

where

DrDE = βDEDr0(nL
3)−2, (32)

where βDE is a constant and

Dr0 =
kBT lnrp
3πµL3

. (33)

The normal stress differences were also given as

N1 DE0 =
nkBT

30D2
rDE

, (34)

N2 DE0 =
−nkBT

105D2
rDE

. (35)

Doi [37] also found that the relative zero–shear viscosity increases with fiber con-

centration up to nL3 = rp, and then decreases.

Dinh and Armstrong [36] developed a constitutive equation for semi–dilute fiber

suspensions in Newtonian fluids. The effect of the suspending fiber is modeled based

on Batchelor’s slender body theory [10]. It was found that the transient shear viscosity

is a constant at fixed strains and converge to the steady state relative shear viscosity.

It was shown that in steady simple shear flow, the suspending fibers align with the

flow and the particles have no effect on the bulk flow if the thickness of the fiber is

neglected. Bibbo, Dinh and Armstrong [13] predicted the relative shear viscosity for

rigid, semi–dilute fiber suspensions. It is given by

η =
1

1− (4cvf/π)1/2
, (36)

Folgar and Tucker [45] studied the fiber orientation distribution in concentrated

suspensions in Newtonian fluid. They used a dispersion term (like a Brownian motion
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force) to approximate fiber–fiber interaction in Jeffery’s [69] equation of motion. It is

found that the interaction is governed by the interaction parameter, CI , which can be

obtained by fitting the model with experimental data. The interaction eliminates the

reversibility of fiber orientation distribution in the shear direction, which is described

in Dinh and Armstrong’s [36] model.

Batchelor [9] presented the landmark paper in the rheology of non–Brownian sus-

pensions. He derived the general equation for the bulk stress in a suspension of

force–free particles with any geometry at any concentration in a Newtonian fluid.

Batchelor [10] then applied this theory to the long, slender body suspensions and the

stress is given in equation (11). For dilute limit, µfiber is given by Batchelor [10]:

µfiber =
πnL3µ

6ln (2rp)
fµ (ǫ) , (37)

where ǫ = 1/ln (2rp). fµ (ǫ) = 1 for infinitely long fibers and for the fiber with finite

aspect ratio, the correction is given by [10]

fµ (ǫ) =
1 + 0.64ǫ

1− 1.5ǫ
+ 1.659ǫ2. (38)

In general, it is very difficult to implement this model in non–dilute suspensions,

since the motion and orientation of each particle must be obtained explicitly. In

dilute suspensions, this information can be calculated based on Jeffery’s [69] theory.

In non–dilute suspensions, the instantaneous orientation of each particle is in general

unknown. However, for a non–dilute suspension under simple shear flow, most of

the particles will be aligned in the flow direction. Koch and Shaqfeh and coworkers

[107, 75, 84] counted the inter–fiber hydrodynamic interactions in the semi–dilute

regime and µfiber in this regime is given by

µfiber =
πnL3µ

3 [ln (1/cvf ) + ln (ln (1/cvf )) + B6]
, (39)

where B6 = −0.66 for suspending fibers when randomly oriented and B6 = 0.16

when all particles are aligned in a common direction. Stover, Koch and Cohen [111]
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measured the fiber orientation distribution in semi–dilute regime and suggested that

the correction function fµ (ǫ) could also be used in equation (39). They found, as

did Carter [25], that the first normal stress difference N1 should be proportional to

the shear rate γ̇. Sundararajakumar and Koch [112] pointed out that hydrodynamic

interaction can not cause non–zero normal stress differences because of symmetry of

the flow, linearity and reversibility of Stokes flow. The reasons for non–zero normal

stress differences could be mechanical contacts between fibers, fiber inertia and a non–

Newtonian suspending fluid. In the present study, it is found that fiber deformation

can also affect the normal stress differences. More results and discussion can be found

in § 3.

Theoretical predictions of relative viscosity in simple shear flow are summarized

in table 2.

While constitutive equations and theoretical models can provide the rheological

properties in a form that is easy to comprehend, direct numerical simulations are

more favorable in some situations, especially for investigating non–dilute or flexible

fiber suspensions. Particle level numerical simulations can discover specific questions

and variables, and have become more and more popular since the 1990’s. Numerous

methods have been developed in this area.

Claeys and Brady [31] have done extensive numerical calculations for elongated

particles in an unbounded fluid with hydrodynamic interactions using Stokesian dy-

namics. This method includes long–range fiber–fiber hydrodynamic interactions as

well as short–range hydrodynamic interactions (lubrication force). Yamane[127] as-

sumed that the lubrication force is dominant when the particles are close to each other

and ignored the long–range hydrodynamic interactions. Sundararajakumar and Koch

[112] simulated dilute to semi–concentrated suspensions, and they included both long–

range and short–range hydrodynamic forces. It was found that for spherical particles,

the lubrication force is not strong enough to prevent solid–body contacts. In the case

22



Table 2: Summary of the theories for the relative viscosity of rigid particle suspen-
sions
Author Year Shape cvf Pe Comment
Jeffery [69] 1922 Ellipsoids Dilute ∞ rp → ∞
Guth [59] 1938 Ellipsoids Dilute ∞ Cj = 0 or ∞
Burgers [22] 1938 Rods Dilute ∞ Isotropic

Cj = ∞
Simha [110] 1940 Ellipsoids

Rods
Dilute 0 rp ≫ 1

Kuhn and Kuhn [77] 1945 Ellipsoids Dilute 0 rp ≫ 1
Blakeney [14] 1966 Rods Dilute

Semi–dilute
All

Batchelor [10] 1971 Ellipsoids
Rods

Dilute All

Hinch and Leal [63] 1972 Ellipsoids Dilute All rp → ∞
Brenner [17] 1974 Ellipsoids

Rods
Dilute All

Doi and Edwards
[38, 39]

1978 Rods Semi–dilute All

Bibbo, Dinh and
Armstrong [36, 13]

1985 Rods Semi–dilute All

Berry and Russel [11] 1987 Rods Dilute Pe ≪ 1 rp ≫ 1
Koch, Shaqfeh and
coworkers
[107, 75, 111, 84]

1990
to
1996

Ellipsoids
Rods

Semi-Dilute All
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of rigid fibers, it is also not enough to prevent actual physical contact between fibers.

They also have shown that the relative viscosity increases with concentration much

more rapidly than predicted by purely hydrodynamic interactions. They concluded

that, in non–dilute regime, actual physical contact must occur, and mechanical con-

tacts have strong impact on the suspension microstructure and rheology.

In all the above mentioned works, the fiber is considered as a rigid rod–like cylinder

in Stokes flow where inertia of fluid and fiber are ignored. These assumptions allow

one to develop theories about the fiber suspension without the complication of fiber

deformation. But it is well known that the fiber shape has an important effect on

suspension microstructure and rheology. Experimental studies [46, 14, 54] have shown

that slight fiber curvature would change the period of fiber rotation, the drag on

the fiber and the shear viscosity of the suspension. Yamamoto and Matsuoka [126]

modeled a flexible fiber as a chain of spring linked spheres. The fiber can stretch,

bend and twist by changing the spring length, bending angle and twisting angle,

respectively. The constraints for springs are implemented in the equation of motion.

The relative viscosities obtained agreed well with experimental results of Forgacs and

Mason [46] but the first normal stress difference is much smaller than was found

in the experiments. Joung, Phan-Thien and Fan [70] followed a similar idea and

used “spring linked spheres” to model long flexible fibers. The relative viscosities

for fibers having different flexibility were calculated and compared with experimental

results from Bibbo [12]. A curve fitted relation between relative viscosity and non–

dimensional flexible fiber stiffness was obtained.

Ross and Klingenberg [103] treated a flexible fiber as a chain of rigid prolate

spheroids connected by ball and socket joins. Compared to Yamamoto and Mat-

suoka’s model, there is no need to solve the iterative constraints for connected springs,

and the model can extend to high aspect ratio fibers. Schmid, Switzer III and Klin-

genberg [104] followed this idea and modeled flexible fibers as chains of rigid rods.
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Their research focused on fiber flocculation, and they concluded that the floccula-

tion are strongly affected by interparticle forces and fiber deformations. However,

they did not consider the hydrodynamic interactions between fibers, nor the two–way

coupling between fibers and the suspending fluid. Switzer III and Klingenberg [113]

and Lindstrom and Uesaka [83] did similar investigations by using the same “chain of

rods” model to simulate a flexible fiber with high aspect ratio under simple shear flow

in Newtonian fluid. These researchers demonstrated that fiber concentration, aspect

ratio, equilibrium geometry, fiber flexibility and fiber–fiber interactions are important

factors in determining the suspension microstructure and rheology. Qi [100] success-

fully reproduced single flexible fiber motions by using the same flexible fiber, and he

solved the fluid flow by using the lattice–Boltzmann method.

1.4 Experimental techniques

Many researchers have studied the experimental stress growth behavior of fiber sus-

pensions. Good summaries and reviews can be found in publications by Ganani and

Powell [48], Bibbo [12] and Zirnsak, Hur and Boger [132]. From these experimental

works, it can be found that in general, the relative shear viscosity and first normal

stress difference increase with increasing fiber volume fraction and aspect ratio. Some

experiments [46, 14, 54] have also shown that fiber flexibility has strong impact on

suspension rheology. However, discrepancies between these experiments exist. Nawab

and Mason [95], Carter [25], Kitano and Kataoka [73] and Goto et al. [54, 55] ob-

served shear thinning in their fiber suspension experiments. But Bibbo [12], Bibbo,

Dinh and Armstrong [13], Ganani and Powell [49] and Milliken et al. [92] did not.

Ganani and Powell [48] found that shear thinning appeared to be observed more in

suspensions with large aspect fibers and high fiber volume concentration. This can be

explained by anisotropic fiber orientation distribution in the flow direction at higher

shear rates.
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Blakeney [14] used a concentric–cylinder viscometer to measure the bulk shear

flow properties of nylon fiber suspension. It was found that relative shear viscosity

will increase rapidly beyond the dilute limit. This behavior can be explained by the

contribution of fiber–fiber interactions and was confirmed in later experiments by

other researchers.

Carter [25], Carter and Goddard [26] investigated the rheological properties of

non–dilute glass fibers in a Newtonian polybutene oil. They found the non–zero first

normal stress difference fitted well with equation (30), and the magnitude was of the

order of a quarter of the shear stress. The phase lag in oscillatory flow was measured

in both pure oil and in fiber–oil suspensions. It was found that phase lag did not

change and the observed normal stress was caused by the fiber–fiber interactions, due

to anisotropy in fiber orientation and shape.

Kitano and Kataoka [73] employed a cone and plate geometry viscometer to mea-

sure the relative viscosity and first normal stress difference in semi–concentrated and

concentrated suspensions of Vinylon fibers in silicon oil. It was found that both prop-

erties are depend on the fiber aspect ratio, volume fraction and shear rate (shear

thinning).

Goto et al. [54, 55] measured the rheological properties of nylon fiber suspensions

and observed a non–zero first normal stress difference for suspending fibers having

aspect ratio larger than 100. The log–log plots of N1 versus γ̇ were straight lines and

could be fitted to the model developed by Carter [25], equation (30). It was found

that suspending fibers with higher aspect ratio have smaller slope on the log–log plot.

The first normal stress difference increases with increasing fiber aspect ratio, volume

concentration and fiber flexibility.

Bibbo [12] used a parallel plate rheometer to measure the rheological properties

of semi–concentrated suspensions with Newtonian and non–Newtonian suspending

fluids. Bulk flow behaviour was observed in steady shear flow, start–up flow and small
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amplitude, oscillated flow. It was found that in Newtonian suspending fluids, the

relative viscosity of the suspension is only a function of the fiber volume concentration

and is independent of fiber aspect ratio and shear rate (no shear thinning). Bibbo [12]

also investigated the wall effects of semi–dilute randomly oriented fiber suspensions

in the shear flow between two parallel plates, both theoretically and experimentally.

It was found that small gap width (approximately around suspending fiber length)

has strong impact on the rheological properties of randomly oriented suspensions.

Ganani and Powell [49] investigated suspensions of glass fibers with mean aspect

ratio of 7.63 and 24.3 in Newtonian fluid. The suspensions showed no elastic effects in

oscillatory shearing tests, no shear thinning behaviour and for small strains, showed

no strain dependence. These conclusions agreed with Dinh and Armstrong’s [36]

model. They argued that the shear thinning behaviour in many other researchers’

experiments did not accurately reflect the real macroscopic rheological behaviour of

the suspensions and that artificial errors might have been present.

Milliken et al. [92] utilized falling ball rheometry to measure the relative viscos-

ity of fiber suspension. The advantage of this rheometry compared to conventional

rheometers is that, it can minimize disturbances to the initial fiber orientation distri-

bution. It was found that randomly oriented fiber suspensions have higher viscosity

compared to aligned fiber suspensions with same fiber volume concentration and fiber

aspect ratio.

Koch and co-workers [111, 98] used laser Doppler velocimetry (LDV) to mea-

sure fiber orientation distribution. The rheological properties are measured by a

concentric–cylinder viscometer, and a suspending fluid with high viscosity was used

to improve accuracy. The relative viscosity and first normal stress difference agreed

well with Bibbo’s [12] experiments. The measured microstructure also agreed with

their theoretical models [107, 75, 84], which are based on Batchelor’s [9, 10] theory.
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CHAPTER II

METHODOLOGY

In this chapter, the numerical methods used to simulate and validate the flexible

particle suspensions are described. The chapter is divided into two main sections.

The numerical methodology employed to simulate the suspensions is presented first,

and it is followed by a description of the validations performed.

First, the novel coupling method, the external boundary force method for fluid–

solid interaction, is presented in § 2.1. The numerical flow solver is an extension of

the LBM developed by Aidun and co–workers [4, 5, 3, 2, 34, 35]; the details of this

solver are described in § 2.2. The deformable particle model and flexible fiber model

are then presented in § 2.3 and § 2.4, respectively. The chapter ends with validation

examples in § 2.5, and the simulation results are in good agreement with theoretical

and experimental results.

2.1 Fluid–solid interaction

Fluid flow over a solid particle results in normal and shear forces exerted by the fluid

on the particle and, conversely, by the particle on the fluid; this is referred to as

the fluid–solid interaction force. This forces the fluid adjacent to the solid surface to

move with the surface velocity (no–slip). If an external boundary force identical to the

fluid–solid interaction force is exerted on the fluid, the fluid will move with the same

velocity. In other words, the effect of the particle motion on the fluid motion could be

identically replaced by an external boundary force [53]. Let Πs and Πf represent the

continuum solid and fluid domains, separated by the fluid–solid boundary, Γ. Here

the subscripts s and f serve to symbolically distinguish the solid and fluid domains,

respectively. The sets of position vectors of the solid and fluid nodes are represented
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by ΠN
s and ΠM

f , where the superscripts N and M denote the solid nodes and fluid

nodes, respectively. The subsets for solid and fluid boundary nodes are represented

by Γs and Γf , respectively. Note that because with this method, the solid boundary

nodes are exactly on the solid boundary, one can consider Γs as a subset of Γ. We use

x with components (x, y, z) as the position vector in the fixed Cartesian coordinate

system. As shown in figure 1.2(c), the position vector for the jth node on ith particle

is given by xl
ij∈ ΠN

s , the position vector for the fluid nodes is represented by xe ∈ ΠM
f ,

where superscripts l and e serve to symbolically distinguish the position vector for

solid nodes and fluid nodes, respectively. Let F fsi(x, t) and g(x, t) represent the

force per unit volume acting respectively on the solid and the fluid points x on Γ at

time, t. Therefore F fsi(x, t) = −g(x, t) for x ∈ Γ. However, the force on the fluid

boundary node xe is given by g(xe, t) which is not equal to F fsi(x, t) when x ∈ Γ.

The Navier–Stokes and continuity equations with the external boundary force can be

written as

ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p+ µ∇2u+ g(x, t)

∇ · u = 0















, (40)

where x ∈ Πf , and in this equation, g(x, t) = 0 when x /∈ Γ. In the discretized

formulation, the external boundary force, g, is evaluated on the fluid boundary node

by interpolation to find g(xe, t), as shown below (see equation(45)).

In most situations, the boundary nodes will not coincide with the fluid nodes,

so the fluid velocity defined by U f (x
l
ij, t) at solid boundary node xl

ij and at time t

should be interpolated by

U f (x
l
ij, t) =

∫

ΠM
f

u(xe, t)D(xe − xl
ij) dx

e, xl
ij ∈ Γs, (41)
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where D(xe−xl
ij) is a discrete Dirac delta function in three–dimensional domain [97],

D(x) ≡















1

64h3

(

1 + cos
(πx

2h

))(

1 + cos
(πy

2h

))(

1 + cos
(πz

2h

))

, if |x| 6 2h,

0, otherwise ,

(42)

where h ≡ ∆xLBM is the unit lattice length in the LBM calculation. For linear

velocity distributions, the interpolation (42) can give an exact solution. For smooth

velocity distributions (continuous first order derivative), the interpolation has second–

order accuracy. However, the velocity profile at the boundary is usually not smooth

and subsequently, relation (41) is only first–order accurate at the boundary. Further

improvement to achieve higher order accuracy is under investigation.

The initial velocity in the fluid domain and the particle position and velocity are

known. The fluid velocity at the particle boundary is equal to the particle velocity

due to the no-slip condition, therefore,

U f (x
l
ij , t−∆tLBM) = U p(x

l
ij, t−∆tLBM), (43)

where the LBM time step ∆tLBM= 1, the term U p(x
l
ij , t − ∆tLBM) is the parti-

cle velocity at solid boundary node xl
ij at the previous time step. The fluid–solid

interaction force F fsi(xl
ij, t) acting on the solid particle boundary node is given by

F fsi(xl
ij, t) = ρf

(

U f (x
l
ij, t)−U p(x

l
ij, t−∆tLBM)

)

/∆tLBM , xl
ij ∈ Γs, (44)

where ρf is the density of the fluid. The resulting force acting on the fluid boundary

nodes is given by

g(xe, t) = −
∫

Γs

F fsi(xl
ij, t)D(xe − xl

ij) dx
l
ij, xe ∈ Γf , (45)

where g will be used as an external boundary force term in the LB equation as will

be discussed in § 2.2.
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F (xl
ij , t) is the combination of the fluid–solid interaction force F fsi(xl

ij, t) and the

external force F ext(xl
ij, t) which could include the gravitational force, interparticle

(electrical or lubrication) forces; therefore,

F (xl
ij, t) = F fsi(xl

ij, t) + F ext(xl
ij, t), xl

ij ∈ Γs. (46)

So for the ith particle with N boundary nodes, if we assume the center of gravity

of the particle is xlc
i , then the total force F i and the torque T i on this particle are

given by

F i(t) =
N
∑

j=1

F (xl
ij, t), (47)

and

T i(t) =
N
∑

j=1

(xl
ij − xlc

i )× F (xl
ij, t), (48)

respectively.

The Newtonian dynamics equations for the ith particle are given by

Mi
dU i

dt
= F i

I i
dΩi

dt
+Ωi × (I i ·Ωi) = T i















, (49)

where Mi and I i are the mass and the inertial tensor of the ith particle; and the

velocity, U i, and angular velocity, Ωi, can be computed by numerical solution of

equation (49). Note that in equation (49), the term dΩi/dt is dependent on Ωi, so

a simple Euler integration may not give accurate results. A fourth–order accurate

Runge–Kutta integration procedure is being used in this study.

2.2 Lattice Boltzmann method with external boundary force

The LBM uses a regular Eulerian grid in the fluid domain. The fluid is modeled as a

group of fluid particles moving with discrete velocity. The state of the fluid at node

xe at time t is described by the distribution function, fk(x
e, t), which is calculated

by the lattice Boltzmann equation [5, 29, 67, 88]

fk(x
e + ek, t+ 1) = fk(x

e, t) +
1

τ
[f eq

k (xe, t)− fk(x
e, t)]. (50)
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Here f eq
k (xe, t) is the equilibrium distribution function at (xe, t), τ is the single

relaxation time constant and ek is the discrete velocity vector. The fluid density ρ

and the macroscopic fluid velocity u(xe, t) are obtained from the first two moments,

given by

ρ(xe, t) =
∑

k

fk(x
e, t) and ρ(xe, t)u(xe, t) =

∑

k

fk(x
e, t)ek. (51)

The most common lattice model for the two–dimensional case is the D2Q9 model,

which uses nine discrete velocity directions, while the model for three–dimensional

case is D3Q19, which uses a cubic lattice with nineteen discrete velocity directions [5]

for the fluid particles moving along the horizontal, vertical and diagonal links. The

equilibrium distribution function is defined as

f eq
k = wkρ

[

1 + 3ek · u+
9

2
(ek · u)2 −

3

2
u2

]

, (52)

with w0 = 4/9 for fluid particles at rest, w1−4 = 1/9 for fluid particles moving in

non-diagonal directions, and w5−8 = 1/36 for diagonal directions in two-dimensional

D2Q9 model; and w0 = 1/3, w1−6 = 1/18 (non-diagonal directions), and w7−18 = 1/36

(diagonal directions) in the three-dimensional D3Q19 model. For the present model,

the pseudo speed of sound is cs=
√

1/3 and the kinematic viscosity is ν = (2τ − 1)/6.

In the longer time scale, the LBM is effectively solving the Navier–Stokes equations

[28, 42, 56].

The lattice Boltzmann operators must be modified at the boundary to fit the

wall boundary conditions. In this paper, three different wall boundary conditions

are applied. These are the periodic, the no–slip wall and the stress–free conditions.

Details about these boundary conditions can be found in the earlier publications

[5, 35].

To simulate the interactions between the fluid and the solid particles, the LBM

with bounce–back must incorporate the boundary conditions imposed on the fluid

by the solid particles. In the conventional LBM, fluid and solid domains share one
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regular Eulerian grid (figure 1.2(a),(b)). The nodes are scanned at each time step to

mark the fluid nodes outside the solid and the fluid nodes inside the solid boundary.

The interaction is calculated by the lattice links that connect the inside and outside

fluid nodes. This operation is relatively computationally expensive.

The external boundary force method presented here involves two independent

but overlapping grid systems. The Eulerian grid represents the fluid domain where

each particle is modeled with a Lagrangian grid. The suspended particles move

continuously in space while the no–slip boundary condition on the surface of the

particle is satisfied by the requirement that the fluid velocity at the solid boundary

node equal the solid velocity at that point. We have to emphasize here that the solid

boundary in LBM with SBB and the LBM with EBF is different – in SBB it is halfway

between fluid and solid nodes, where in EBF, the solid boundary represented by the

Lagrangian grid nodes is the actual and precise boundary of the particle moving

continuously through the fluid domain, as shown in figure 1.2(c).

The lattice Boltzmann equation should be modified to include the fluid–solid

interaction force g from equation (45) by adding an additional term to the collision

function. This changes the lattice Boltzmann equation to

fk(x
e + ek, t+ 1) = fk(x

e, t) +
1

τ
[f eq

k (xe, t)− fk(x
e, t)] +

3

2
wkg · ek. (53)

Although a similar term is also used in the IBM by Feng and Michaelides [44], the

method for calculating the fluid–solid interaction force is very different. With the EBF

method, g is computed from (45) by the velocity difference between fluid and solid at

the boundary nodes; where in IBM, the interaction force is the internal spring force

generated by the small deformation of the solid boundary, with high solid stiffness.

Also the way to calculate the dynamics of the solid particle is different. We integrate

equation (49) to capture the motion of the solid particle, where in IBM, the solid

nodes move with the local fluid velocity.
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2.3 Extension to Deformable Particles

Various numerical schemes can be applied for computation of the particle deforma-

tion. For example, the finite element method has been coupled to the LB equations

to simulate suspension of deformable particles [85]. Here, we simulate the particle

deformation using the lattice–spring model. This method consists of a set of Hookean

lattice–spring links connecting regularly spaced mass nodes. It has been shown that

the large scale behavior of the LSM system can be mapped onto continuum elasticity

theory [23]. In this method, the elastic links which generate the stretching energy act

as Hooke’s Law springs. For small deformations, the elastic energy associated with

the ith node, Ei, is given by

Ei =
k

2

n
∑

j=1

(|rij| − |req
ij |)2. (54)

Here k is the spring constant, n is the total number of nodes that connect with

node i, |rij|is the length between node i and j, |req
ij | is the force free equilibrium

spring length between i and j. The elastic force F s
ij acting on the lattice node i due

to node j is calculated from the derivative of the energy function

F s
ij = − ∂Ei

∂rij

= −k

( |rij| − |req
ij |

|rij|

)

rij. (55)

So the total spring force acting on node i is

F sT
i =

n
∑

j=1

F s
ij . (56)

This internal solid force is generated by the extension or contraction of the spring

links. For small deformations, this simple model is shown to follow the linear elasticity

theory with Young’s modulus EY = 5k/2∆xLSM , Poisson’s ratio ν = 1/4 and the

speed of sound cs = ∆xLSM
√

3k/mi [23]. Here ∆xLSM is the unit link length of the

lattice spring and mi is the mass assigned to each node. One can change Poisson’s
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ratio by introducing the harmonic potential, rotational potential or additional multi-

body interaction terms in the energy function and elastic force function of LSM

[8, 105].

There are two basic approaches to calculate the deformation of the solid by using

LSM as outlined below. One way is to use an explicit scheme where mass is assigned

on each node based on the solid density, and the total force acting on the i th node

is given by

F tot
i = F sT

i + F
fsi
i + F ext

i . (57)

Here, F sT
i is the spring force, F fsi

i is the fluid–solid interaction force and F ext
i is the

external force. Then we integrate Newton’s equation of motion, F tot
i = mi(∂

2ri/∂t
2),

with an explicit method to update the acceleration, velocity and the position for every

LS node. This method is straight forward and easy to implement, but it has to meet

certain stability requirements [6]. The Courant number Cr= cs∆t/∆xLSM needs to

be smaller than one to reduce the fluctuations in the fluid–solid interaction force, and

∆xLSM > ∆xLBM . These conditions impose a severe limitation on the applicability of

this method. In three–dimensional calculations, in order to reduce the computation

cost, it is usually preferred to have ∆xLSM < ∆xLBM .

The second approach is to use an implicit scheme where at each time step, the

particle will first move without deformation due to F
fsi
i +F ext

i , then under the same

force, the particle will deform. Each lattice–spring node will instantly relax to its

equilibrium state, the spring force F sT
i at each solid node is given by F s

i = −(F fsi
i +

F ext
i ), and based on equation (55), we can write

ri =
1

n

[

F
fsi
i + F ext

i

k
+

n
∑

j=1,j 6=i

(
|req

ij |
|rij|

rij + rj)

]

. (58)

The implicit method is more stable than the explicit method, although it may

require additional computational time in the deformation calculations. However,

considering that the lattice–spring deformation calculations are a small part of the
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whole simulation, especially in the simulations that have large number of deformable

particles with particle–particle interaction, the implicit scheme seems to be a better

choice.

The computational algorithm that has been used in the external boundary force

LBM–LSM method can be summarized as follows:

i. At t = t0, the initial fluid velocity in the fluid domain and the particle veloc-

ity/position are known.

ii. The fluid velocity U f on the boundary node is obtained by equation (41), the

fluid–solid interaction force F fsi from equation (44) is applied on the solid

boundary nodes.

iii. The interaction force and the external force are applied to all solid boundary

nodes, the total force and torque acting on the particle are calculated according

to equation (47) and (48), the particle velocity and position are updated by

numerical integration, and the particle deformation is calculated by LSM.

iv. The interaction force also acting back on the fluid lattice nodes is computed by

equation (45), and the fluid field is solved by the modified LBM equation (53).

The computations loop back to step (ii).

2.4 Flexible fiber model

The flexible fiber is modeled as a chain of N rods and N + 1 hinges, as shown in

figure 2.1. Each rod has an equilibrium length of l and diameter D. The fiber length

is L = Nl, and fiber aspect ratio rp = L/D. We use 4 boundary nodes on the

circumference of each hinge to calculate the fluid–solid interaction force, as shown in

figure 2.2. Rods bend, twist about the hinges and change length due to the forces

that are applied on the fiber boundary nodes. This model is used to calculate the
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Figure 2.1: The flexible fiber is modeled as a chain of rods.
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D

Fiber boundary node

Figure 2.2: The boundary nodes on the circumference of each hinge.

fiber deformation by the real material properties such as Young’s modulus and shear

modulus.

The assumptions are:

i. The suspending fluid is an incompressible Newtonian fluid and the bulk flow is

assumed to be homogeneous, U∞(y) = γ̇y.

ii. The fiber diameter and length are large enough so that the Brownian motion

may be negligible.

37



The force densities applied on the fiber boundary nodes are the fluid–solid in-

teraction force F fsi, the external force which could include the gravitational force

F gra and interparticle (electrical F ele, contact F con or lubrication F lub forces. The

effective volume for each hinge is dQ ≡ LπD2/ (4(N + 1)).

In this simulation, the densities of fluid and fiber are very close, the gravitational

force is balanced by the buoyancy force and we only consider the lubrication force.

A similar lubrication force used by Yamane et al. [127] and Joung et al. [70] is also

used here with an additional limitation for the case when actual contact of hinges

occurs. Let V in and V jm be the velocity of hinge n in fiber i and hinge m in fiber

j, respectively (Note, i could be equal to j), rin−jm ≡rin−rjm is the position vector

from hinge m to hinge n, and |rin−jm| is the length of the vector. The relative velocity

component V lub
in−jm between these hinges is

V lub
in−jm =

rin−jm

|rin−jm|

[

rin−jm

|rin−jm|
· (V in − V jm)

]

. (59)

The lubrication force density between hinges in and jm is given by

F lub
in−jm = −

9µV lub
in−jm

2D (|rin−jm| −D)
. (60)

Then the lubrication force density applied on hinge in is

F lub
in =

∑

jm

F lub
in−jm. (61)

To avoid having fibers cross each other and to remove singularities when overlap-

ping of hinges occurs (|rin−jm| − D = 0), the use of equation (60) is restricted in

the range of D + ǫ 6 |rin−jm| 6 1.25D, where ǫ is a very small positive number to

ensure a stable numerical simulation. If the gap is smaller than ǫ, the translation and

rotation velocities are reset to make sure the relative velocity component along the

direction with minimum distance between the surfaces is equal to zero.
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The fluid–solid interaction force F
fsi
in is given by equation (44), the total force

density imposed on hinge in is

F in = F
fsi
in + F lub

in , (62)

and the total force density applied on fiber i is F i =
∑N

n=0
F in.

The total force density on each hinge can be split into two parts; Fmov
in causes ac-

celeration and F
def
in causes fiber bending, twisting and rotation. From this definition,

Fmov
in = F i/ (N + 1) and F

def
in = F in − Fmov

in . (63)

It is clear that
∑

n F
mov
in = F i and

∑

n F
def
in = 0. The change of the length of rod

in (the rod between hinge in− 1 and in), dlin is

dlin =
l

EY (πD2/4)

[

pin ·
(

F
def
in − F

def
in−1

)]

dQ. (64)

Here EY is the Young’s modulus of the fiber, pin is the unit vector parallel to the

axis of symmetry of rod in and

pin =
rin − rin−1

|rin − rin−1|
. (65)

For flexible fiber i, the unit orientation vector is calculated by averaging the pin

of all element rods

pi =
1

N

∑

in

pin. (66)

Once the forces are known, the moments acting at each hinge can be calculated.

For hinge n in fiber i, the moment that causing flexure is

Y in =
N
∑

m=n+1

(rim − rin)× F
def
im dQ−

n−1
∑

m=0

(rim − rin)× F
def
im dQ. (67)

This moment can be decomposed into bending and twisting vector components,

Y b
in and Y t

in respectively. The twisting moment is given by
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Y t
in = pin (pin · Y in) , (68)

and the bending moment

Y b
in = Y in − Y t

in. (69)

The bending and twisting angles (βin and αin) can be calculated as

∣

∣Y b
in

∣

∣ = − (βin − βeq
in)EY I/l,

∣

∣Y t
in

∣

∣ = − (αin − αeq
in)EGJ/l.

(70)

Here EG is the shear modulus of the fiber material, I and J are the appropriate

area moments of inertia. For a circular cylinder with diameter D, I = πD4/64 and

J = πD4/32. The angles βeq
in and αeq

in are specified to mimic different equilibrium fiber

shapes. For an intrinsically straight fiber, βeq
in = 0 and αeq

in = 0.

2.5 Validation

The new numerical method was created with two levels of objectives. First, to vali-

date and confirm the existing results of rigid and flexible fiber suspensions. Second,

to improve the accuracy of rheological quantities predicted. The validation of the

lattice–Boltzmann method with a discrete external force field will consist of a num-

ber of simplified validation cases. Single particle simulations will verify the fluid–solid

interaction and the elastic solid model. Many–particles simulations also have been

performed to validate the solid–solid interactions and the coupling of hydrodynamics

through the lattice–Boltzmann fluid. Several validations, as outlined in table 3, have

been simulated and the results are presented in this section.

To improve the computational efficiency and remove wall effects, an unbounded

shear–periodic domain is implemented in the LBM code through a Lees–Edwards

boundary condition (LEBC) [81] as described by Wagner and Pagonabarraga [117].
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Table 3: Validation of LBM–EBF simulation technique
Simulation Aera Validated Particle(s) Validation
(1) A circular cylin-
der in shear flow

Fluid–solid interaction 1 rigid cylinder Experiments:
Poe & Acrivos [99],
Zettner & Yoda [129]
Numeric solutions

(2) A ellipsoid in
shear flow

Fluid–solid interaction 1 rigid ellipsoid Analytic solution:
Jeffery[69]

(3) Settling sphere
in channel

Fluid–solid interaction 1 rigid sphere Experiments:
Miyamura et al. [93]

(4) RBC in capil-
lary flow

Fluid–solid interaction
Elastic deformation

1 RBC Experiments:
Tsukada et al. [116]

(5) Bulk viscosity
of blood

Fluid–solid interaction
Elastic deformation

120+ RBCs Experiments:
Fung [47],
Merrill et al. [90]

(6) Rotation period
of a rigid fiber

Fluid–solid interaction 1 rigid fibers Experiments:
Trevelyan & Mason
[115],
Cox [32]

(7) Deformation of
a rigid fiber

Flexible fiber model 1 flexible fibers Experiments:
Forgacs & Mason [46]

(8) Bulk viscosity
of rigid fiber sus-
pension

Fluid–solid interaction 1000+ rigid
fibers

Experiments:
Blakeney [14]

(9) Bulk viscosity
of flexible fiber sus-
pension

Fluid–solid interaction
Flexible fiber model

1000+ flexible
fibers

Experiments:
Bibbo [12]
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Figure 2.3: Illustrations of unbounded shear domain with Lees–Edwards boundary
condition.

Using LEBC, a uniform shear flow has been reached without the moving solid walls,

the spatial inhomogeneities that are introduced by the wall effects are eliminated and

the bulk rheological properties can be recovered in a smaller fluid domain with fewer

particles. The periodic boundary condition is still applied on the flow and vorticity

directions (x and z directions, respectively), with the particle image recurring at

regular intervals according to Lx and Lz (Lx and Lz are the domain length in x and

z directions, respectively). In the shear direction (y direction), the periodic particle

images which are offset by Ly will have a corresponding offset of γ̇Lyt in the flow

direction (x direction), and the velocity of the image in the flow direction is altered

by the domain speed, γ̇Ly, where γ̇ is the velocity gradient in y direction, as shown

in figure 2.3 and equation (71).
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rx
′ =























(rx + γ̇Lyt) mod Lx ry > Ly

rx mod Lx 0 6 ry 6 Ly

(rx − γ̇Lyt) mod Lx ry < 0

ry
′ = ry mod Ly

rz
′ = rz mod Lz

vx
′ =























vx + γ̇Ly ry > Ly

vx 0 6 ry 6 Ly

vx − γ̇Ly ry > Ly

vy
′ = vy

vz
′ = vz

(71)

Here r′ = r′xex + r′yey + r′zez and v′ = v′xex + v′yey + v′zez are the new position

vector and velocity of the particle image respectively.

2.5.1 A circular cylinder in simple shear flow

The motion of a neutrally buoyant circular cylinder in simple shear flow has been

studied over a wide range of Reynolds number. The cylinder is free to rotate with

center axis on the centerline of the fluid field. Due to the wall effect, the non–

dimensional rotation speed φ̇/γ̇ depends on the Reynolds number, Re = γ̇a2/ν, and

the flow confinement ratio κ= H/a, where γ̇ is the shear rate, a is the diameter of the

cylinder and H is the channel height. The LBM method uses a computational domain

with 1200 × 200 lattice nodes. The results are compared at two confinement aspect

ratios with the experimental data. The non–dimensional angular rate of rotation with

different Reynolds number and confinement ratio are compared with the experimental

data by Poe and Acrivos [99] at H/a = 11.24 and Zettner and Yoda [129] with

H/a = 4. The non–dimensional rotation rate will decrease more rapidly with the

Reynolds number by using a larger confinement ratio, as shown in figure 2.4.
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Figure 2.4: Non–dimensional angular rate of rotation of a torque–free cylinder in
simple shear flow. The solid squares (�) and triangles (N) are the experimental data
of Poe & Acrivos [99] and Zettner & Yoda [129], the open squares (�) and open
triangles (△) are the results from present LBM with EBF, the crosses (×) are results
from Ding & Aidun [34] with SBB at Re < 5.
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Figure 2.5: A neutrally buoyant cylinder in simple shear flow, off–center initial
position.

When H/a ≫ 1, one can shown from Jeffery’s [69] solution (set a = b in equation

(74)) that in the limit Re → 0, the rate of angular rotation, φ̇ = γ̇/2. For the

case H/a = 11.4, the influence of the boundary walls on the circular cylinder is

small, therefore φ̇/γ̇ approaches ∼ 0.5 as Re → 0. For the small confinement ratio,

H/a = 4, however, the effect of the viscous shear stress on the cylinder due to the

presence of the boundary walls becomes significant. The cylinder rotates at a lower

angular velocity due to the viscous stress. In the limit of Re → 0, the rotation rate

φ̇/γ̇ → 0.42 for H/a = 4, as shown in previous studies [34, 33].

An advantage of the EBF method over SBB is the elimination of small fluctuations

which can be detrimental in simulation of deformable particles. To demonstrate,

consider a cylinder with diameter a positioned at rest half way from the bottom wall

to the center between two parallel plates. The plates are 4a apart moving in opposite

directions with velocity, Uw/2, as shown in figure 2.5. The computational domain

has 2000 × 80 lattice nodes. The trajectory of the particle towards the centerline

computed with LBM with SBB and EBF agree well, as shown in figure 2.6. However,

the upward velocity, v, shows fluctuation with SBB as compared to no fluctuation

with EBF, as shown in figure 2.7. Although the amplitude of the fluctuation in v
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Figure 2.6: Non-dimensional y position vs. non-dimensional time γ̇t. The solid line
is from LBM with SBB and the dash line is from LBM with EBF.
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Figure 2.7: Non-dimensional y direction velocity vs. non–dimensional time γ̇t. The
solid line is from LBM with SBB and the dash line is from LBM with EBF.

47



H
y

x

L

b

- Uw / 2

Uw / 2

a

Figure 2.8: A solid ellipsoid immersed in simple shear flow.

is small (∼ 0.2% of Uw), this may result in numerical instability when it is applied

to deformable particles. There is no fluctuation with EBF because the fluid–solid

boundary moves continuously across the domain.

2.5.2 An ellipsoid in simple shear flow

The motion of a solid ellipsoid in a simple shear flow is analyzed in this section. The

boundary of this particle is given by

x2

a2
+

y2

b2
+

z2

c2
= 1. (72)

When one of the principal axes of the ellipsoid is kept parallel to the vorticity

vector, as shown in figure 2.8, the rotation angle, φ, and the angular rate of rotation,

φ̇, are given by [69]

φ = tan−1

(

b

a
tan

abγ̇t

a2 + b2

)

, (73)

φ̇ =
γ̇

a2 + b2
(

b2cos2φ+ a2sin2φ
)

, (74)

where γ̇ is the shear rate and t is time. In our simulation, the computational domain

is 120 × 120 × 60 lattice nodes. The Reynolds number Re = γ̇d2/ν, where d =

2a. For a different aspect ratio b/a, the computational results agree very well with
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Figure 2.9: γ̇ = 1/6000, a = 12, ν = 1.5, Re = 0.064 , Case(1) b = c = 9, the
solid line is Jeffery’s solution and the crosses (×) are the simulation result, Case(2)
b = c = 3 the dash line is Jeffery’s solution and the open squares (�) are the
simulation result.
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Jeffery’s analytical solution, as shown in figure 2.9. This demonstrates that the no–

slip boundary condition on the ellipsoid surface is well satisfied.

2.5.3 Sedimentation of a sphere in a square cylinder
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d
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Figure 2.10: Sedimentation of a sphere in a square cylinder. The curve is the best
fit to the experimental data of Miyamura et al. [93]. The open squares (�) and
crosses (×) are the results from LBM–EBF with different grid resolution.

A sphere with diameter d is released in a vertical square cylinder of width L settling

under gravity force Gf , as shown in figure 2.10. The sphere is initially released at the

center of the cross–section of the channel with zero velocity, and it settles along the

axis of the channel reaching a constant velocity. The steady state settling velocity Used

is normalized with the free settling velocity Ug = Gf/(3πµd) from Stokes equation.

The simulation results are compared with the experiments of Miyamura et al.

[93]. In the present analysis, the channel is divided into 1600× 32× 32 lattice units.

A zero velocity profile is applied at the inlet and the normal derivative of velocity is
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Figure 2.11: Axisymmetrically deformed RBC in a “parachute configuration”.

set to zero at the downstream boundary. The curve is the best fit to the experimental

data. Results from a finer grid 3200× 64× 64, are also included at d/L = 0.1 and 0.7

for evaluating the effect of grid resolution. Figure 2.10 shows the comparison between

the experimental values and our computational results.

2.5.4 RBC in capillary pressure driven flow

In the next two sub–sections, several problems are presented to demonstrate the ef-

fects of the external boundary force method. We combine the lattice Boltzmann

method and the lattice–spring model to simulate the deformable particles in suspen-

sion. Deformable particles in the shape of red blood cells are used as an example. It

is well known that red blood cell (RBC) deformation is one of the most important

aspects of blood rheology. Changes in RBC deformation are known to alter blood flow

viscosity [72, 108] and diffusivity [27]. The LBM with EBF presented here is capable

of simulating suspensions of RBC at the physiological volume fraction of 47%.

In this paper, a capsule with deformable membrane that has the same geometry

and the material properties of real RBC is used. RBC has complicated membrane

structure with a cytoskeleton and phospholipid membrane encapsulating a fluid so-

lution of haemoglobin. Under normal static conditions, it has a three dimensional

biconcave elastic membrane with elastic shear modulus of 6.6× 103 dynes/cm [118].

The plasma surrounding the RBC has a viscosity of 1.2 cP at 37◦C. The RBC has

a major diameter of 7.8µm and thickness of 2.2µm at the flank and 0.9µm at the
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dimple. These values are used in the following simulation.

It is well known from past experiments that a RBC’s shape changes into a parachute

shape in capillary pressure driven flow, as shown in figure 2.11. The RBCs retain their

shape through the capillary tube, and then recover their original shape in the post

capillary region. This unique deformation of the RBC is necessary in nature for high

fluidity in micro vessels and for high efficiency of oxygen diffusion to tissue, as it

increases the surface area and interaction with the endothelial cells.

Several investigators have used this phenomenon to measure the RBC’s deforma-

bility. In the recent experimental setup of Tsukada et al. [116], they use a set of

transparent crystal micro channels and a high speed video camera to capture high–

resolution pictures and obtain quantitative data. Dilute suspensions of RBCs passing

through a glass capillary tube with diameter of 9.3µm were imaged and analyzed.

The velocity and the deformation index DIP of RBC are dependent on the pressure

gradient in the channel. In this experiment [116], DIP is given by

DIP =
c

d
. (75)

Here d is the diameter of the deformed RBC in the parachute configuration, and

c is the length of the RBC along the axial direction as shown in figure 2.11. The

simulation results are compared with the experimental results [116]. The Capillary

number CaP in figure 2.12 is defined as

CaP =
µUx

ES

, (76)

where µ is the viscosity of the suspending fluid, Ux is the RBC velocity and ES is the

membrane shear modulus.

The RBC deformation index DIP is shown in figure 2.12 as a function of Capillary

number CaP . The simulations agree well with experiments up to CaP ≈ 0.35 where

we see a deviation between the results.
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Figure 2.12: Deformation index DIP vs. the Capillary number CaP , the solid
squares (�) are the experiment data from Tsukada et al. [116] and the open squares
(�) are LBM–EBF simulation results.
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2.5.5 Bulk viscosity of blood

The non–Newtonian shear–thinning viscosity of blood is well documented [19, 90]

with RBC deformation recognized as one of the most important factors in suspension

viscosity [72, 108].

At high volume fraction, blood is often described by Casson’s model, given by

√
τeff =

√
τyield + Cblood

√

γ̇, (77)

where τeff is the effective suspension shear stress, τyield is the yield stress of the

suspension in shear, Cblood is a constant and γ̇ is the shear rate. The reduced viscosity

of blood is defined as

µr =
µeff

µ
, (78)

where µeff = τeff/γ̇ is the effective suspension viscosity, µ is the viscosity of the sus-

pending fluid. A Casson fluid exhibits non–Newtonian and shear–thinning behavior.

The reduced viscosity µr is a function of shear Capillary number CaS which is defined

as

CaS =
µγ̇R

ES

, (79)

where γ̇ is the shear rate and R is the average undeformed RBC cross–section radius

when viewed from the side. Here the shear rate γ̇ = Uw/H, where Uw is the velocity

difference between the top and bottom walls, and H is the channel height.

The reduced viscosity can be successfully simulated with O(102) particles [85,

109]. To study blood rheology at continuum–level scales, 120 RBCs are simulated

at 47% volume fraction with 0.0149 < CaS < 0.1342, corresponding to shear rate

ranging between 16 s−1 to 144 s−1, respectively. The plasma has viscosity of 1.58

cP with density of 1030 kg/m3 at 25◦C [60, 118]. Simulations of 80, 120, and 160

RBCs produce the same result in bulk viscosity. The cases with CaS < 0.01 are not

compared here due to the influence of non-hydrodynamic particle interactions that

lead to RBC aggregates known as rouleaux [47]. It is shown in figure 2.13 that the

54



0.00 0.03 0.06 0.09 0.12 0.15

1

2

3

4

5

6

7

8

 

 

r

CaS

 LBM-EBF
 Experiment

Figure 2.13: The open squares (�) are reduced suspension viscosity of simulations
of 120 RBCs at 47% volume fraction as a function of CaS. The solid squares (�)
are the experimental data reported by Brooks et al. [19] at 25◦C with 47.6% volume
fraction
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simulation results have a profile similar to that of the experimental data reported by

Brooks et al. [19].

2.5.6 Single rigid fiber

In the next four sections, we provide some example problems to validate the LBM–

EBF method for fiber simulation. In this subsection § 2.5.6, we examine the accuracy

of computing the shear stress on the surface of a rotating cylinder at different aspect

ratios rp. In § 2.5.7, we simulate the flexible fiber with different stiffness in simple shear

flow where the orbits of bent fibers are compared with experimental data from Forgacs

and Mason [46]. Comparison of computational results for rigid fiber suspensions

with experiments is presented in § 2.5.8. Computational simulations of flexible fiber

suspensions and the effect of fiber stiffness on relative viscosity are discussed in § 2.5.9.

To improve the computational efficiency and remove wall effects, an unbounded

shear domain is implemented based on the Lees–Edwards boundary condition (LEBC)

[81]. The uniform shear flow has been reached without the moving solid walls, the

spatial inhomogeneities that are introduced by the wall effects are eliminated and the

bulk rheological properties can be recovered using smaller fluid domain with fewer

particles. Periodic boundary conditions are applied in the flow and vorticity directions

(x and z directions in figure 1.1, respectively).

Bretherton [18] expanded Jeffery’s solution [69] to any axisymmetric particle and

used an effective aspect ratio re equal to rp for an ellipsoidal particle. For a single

ellipsoidal particle in Stokes shear flow, the governing equations are equations (2) and

(3). Integrating these two equations yields equations (4) and (5).

The particle rotation period Tp increases with increasing ellipsoid aspect ratio,

γ̇Tp = 2π (re + 1/re). For a rigid cylinder of aspect ratio rp = L/D, the equiva-

lent aspect ratio has been measured by Trevelyan and Mason [115]. The compu-

tational results presented in figure 2.14 show agreement with Cox’s solution [32],
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Figure 2.14: Non–dimensional rotation period γ̇Tp vs. fiber aspect ratio rp in a x, y
simple shear flow.
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Figure 2.15: Non–dimensional rotation period γ̇Tp vs. fiber diameter D.
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re = 1.24rp/
√

lnrp, and with the experimental data of Trevelyan and Mason [115].

In our simulation, the computational domain is 100× 100× 10 lattice nodes, and the

suspending fibers have diameter of D = 0.2 LBM unit lattice size. This demonstrates

that the no–slip boundary condition on the ellipsoid surface is satisfied.

To show the accuracy of the interpolation in the EBF method, especially for

fibers that have sub–grid diameters, several simulations were performed for fibers

with diameter D = 1, 0.4, 0.1 and 0.04 lattice units with fixed aspect ratio, rp = 32.

In these simulations, only the size of the LBM lattice unit is changed, while all other

parameters remain the same. For example, the size of the LBM lattice unit for

D = 0.1 is ten times larger than is the case for D = 1. As shown in figure 2.15,

results show very small deviation between each other and show good agreement with

Cox’s model with less than 2% difference.

2.5.7 Single flexible fiber

To quantitatively measure the bending deformation of a single flexible fiber, Forgacs

and Mason [46] took photographs at short time intervals during the rotation of a

long Nylon filament (rp = 170). The result presented in figure 2.16 clearly shows

the increase in deformation with shear rate, γ̇. It also shows the asymmetry of the

loci about the y axis due to the compression and the extension forces. To reproduce

the existing experimental results, the fiber and the suspending fluid have the same

physical properties as Forgacs and Mason used in the experiment; the suspending

fibers have diameter of D = 0.0122mm, aspect ratio rp = 170 and Young’s modulus

EY = 6.3 GPa. The dynamic viscosity of the suspending fluid is µ = 9.12Pa·s. In

our simulation, the computational domain is 100 × 100 × 10 lattice nodes and the

suspending fibers have diameter of D = 0.2 LBM unit lattice size. The simulation

result is in fairly good agreement with the experimental result in figure 2.16.
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Figure 2.16: Polar plot of the loci of the end of a Nylon filament (rp = 170) during
rotation in a x, y simple shear flow. The open triangles (△), open squares (�) and
open upside–down triangles (▽) are the experiment data of Forgacs and Mason [46]
for shear rate γ̇ = 3.20, 3.54 and 4.25sec.−1. The solid line (—), dash line (- - -) and
dot line (· · · ) are the corresponding simulation results
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Figure 2.17: The relative shear viscosity η vs. fiber volume fraction cvf in dilute
regime. The solid squares (�) are the experiment data of Blakeney [14], the open
squares (�) are the results from present LBM with EBF.
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2.5.8 Rigid fiber suspensions

One of the main objectives of our work is to obtain a better understanding of the rheo-

logical behavior of flexible fiber suspensions. Experimental results are often presented

in terms of relative shear viscosity, defined in equation (9)

Blakeney [14] used a Couette device to measure the viscosity of rigid fiber sus-

pensions in a Newtonian fluid. We compare the relative shear viscosity computed

from our simulations with his experimental results. In our simulation, the computa-

tional domain is 80× 80× 80 lattice nodes and the suspending fibers have diameter

of D = 0.8 LBM unit lattice size. The length and aspect ratio of a fiber is L = 16

LBM unit lattice size and rp = 20 respectively. As shown in figure 2.17, the trend of

the computational results follows experimental data well. The simulations seem to

have small overprediction.

2.5.9 Flexible fiber suspensions

Fiber stiffness plays an important role in fiber suspension microstructure and rheology.

Forgacs and Mason [46] and Goldsmith and Mason [52] have studied the flow induced

deformation of a single flexible fiber in simple shear flow. A cylindrical flexible fiber

is predicted to bend when the non–dimensional parameter bending ratio, given by

equation (1), is small. There have been experiments to measure the viscosity of

flexible fiber suspensions [12]. In Bibbo’s experiment, the nylon fiber has density of

ρf = 1.25 × 103kg/m3, diameter of D = 0.12mm and Young’s modulus EY = 3.0

GPa. The suspending fluid has density ρ = 0.97 × 103kg/m3 and dynamic viscosity

µ = 13Pa·s. The flexible fiber suspensions are simulated with volume fraction 1.7% 6

cvf 6 12.4%, corresponding to the number of fibers between 180 to 1260. The bending

ratio corresponding to aspect ratios rp = 16, 32 and 52 are BR = 2942, 248 and 42

respectively. In these simulations, the computational domain is 80× 120× 80 lattice

nodes and the suspending fibers have diameter of D = 0.4 LBM unit lattice size. As
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Figure 2.18: The relative shear viscosity η vs. fiber volume fraction cvf for fibers
with different aspect ratio. The solid triangles (N), crosses (×) and solid upside–down
triangles (H) are the experiment data of Bibbo [12] (rp = 17, 33, 51). The open circles
(◦) are the experiment data of Petrich et al. [98] (rp = 50). The open triangles (△),
open squares (�) and open upside–down triangles (▽) are the results from present
LBM with EBF (rp = 16, 32, 52).
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shown in figure 2.18, the simulation results compare well with experimental results in

the range of fiber aspect ratio and volume fraction covered by the experiments. The

effect of aspect ratio at a given volume fraction on η seems to be relatively small.
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CHAPTER III

RESULTS AND DISCUSSION

The validation of the lattice Boltzmann approach with the EBF method for fiber

suspension is presented in the previous section § 2.5 and in publications [122, 121].

Previous studies show that adding fibers to Newtonian fluids will increase both the

relative viscosity and the first normal stress difference of the suspensions [95, 73, 45,

49, 107, 98, 106]. The focus of the present study is to investigate the effect of fiber

stiffness on the microstructure and rheology of flexible fiber suspensions. Fibers with

different stiffness, aspect ratio and volume concentration are being considered in this

study, including the effect of fiber–fiber interactions.

An unbounded shear domain is implemented based on the Lees–Edwards boundary

condition (LEBC) [81]; This was described by Wagner and Pagonabarraga [117] and

Macmeccan et al. [85]. It is intended to improve computational efficiency and to

remove wall effects. In these simulations, the suspending fluid has density ρ= 0.97×

103kg/m3 and dynamic viscosity µ = 13Pa·s. The computational domain is 4L ×

5L× 4L, and the suspending fibers have diameter of D = 0.4 LBM unit lattice size.

3.1 Relative viscosity

To examine the effect of fiber stiffness on relative viscosity, three series cases with

aspect ratio rp = 16, 32 and 52 are considered. The results presented in figure 3.2,

figure 3.3 and figure 3.4 clearly show that the fiber bending ratio (BR) has significant

influence on the suspension’s relative viscosity. In these figures, different symbols

represent different fiber volume fraction, and simulations cover from the dilute to

concentrated regime. When BR < 3, the suspension viscosity is indeed inversely

related to the fiber stiffness, while for BR > 3, the fiber can be considered as rigid.
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The difference between flexible fibers and rigid fibers is quite large. For fibers with

the same aspect ratio, this difference increases as suspension concentration increases.

For example, for fibers having aspect ratio rp = 32, the relative viscosity η increases

from 1.06 to 1.24 for volume fraction cvf = 0.018, and from 1.18 to 1.81 for cvf =

0.035, as shown in figure 3.3. The difference also increases with fiber aspect ratio

for suspensions having the same fiber suspension concentration. For example, for

suspensions having volume fraction cvf = 0.053, η increases from 1.29 to 1.78 for

rp = 16 as shown in figure 3.2, and from 1.37 to 2.58 for rp = 32 as shown in

figure 3.3.

The relative viscosity of a flexible fiber suspension may be fitted using the empir-

ical equation [70],

η = ηrigid

(

1 +
A0

1 + eBR/A1

)

. (80)

Here A0 and A1 are parameters that can be determined from the simulation data

by least–squares curve–fitting. From the results shown in figure 3.2, figure 3.3 and

figure 3.4, these two parameters are estimated to be

A0 = rp(1.00082cvf + 0.69672c2vf ), A1 = 70/r2e . (81)

Equation (80) is then used to fit the simulation data, as shown in figure 3.5,

figure 3.6 and figure 3.7. This relation can be used to predict flexible fiber suspension

viscosity. The relative viscosity of rigid fiber suspension can be easily found through

existing methods; one only needs to know the fiber bending ratio BR, fiber aspect

ratio rp and the suspension volume fraction cvf to find the two parameters (81) and

then calculate the relative viscosity for flexible fiber suspension using (80).

The effect of fiber stiffness (bending ratio BR) on the relative viscosity can be

explained based on the fiber orientation distribution. The relation based on Batch-

elor’s theory is presented here. These equations are in principle valid only in the

dilute regime. However, Batchelor’s theory clearly relates rheological properties with
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suspension microstructure, including the effects of hydrodynamic interactions. The

equations are based on the fiber orientation distribution, implicitly including some of

the effects of non–hydrodynamic interactions.

Based on the spherical coordinate system, as shown in figure 1.1, equation (12)

becomes

ηB = 1 +
µfiber

µ

〈

px
2py

2
〉

= 1 +
µfiber

4µ

〈

sin4θsin22φ
〉

. (82)

Equation (82) shows that the fiber orientation has strong influence on the suspen-

sion shear viscosity. The shear stress has maximum value when fiber orientation angle

φ is equal to π/4 or 3π/4 and has minimum value when φ equal to 0, π/2 or π. In the

present simulation, the orientation of every fiber at any given time step is given. It is

advantageous to choose p so that px > 0 and φ ∈ [0, π). The probability distribution

function obtained from the simulation is a discrete distribution. It was converted to

a continuous distribution by using the Dirac delta function. For suspensions having

n fibers, the probability function is

p (φ) =
1

n

n
∑

i=1

δ (φ− φi) , (83)

where φ1, · · · , φn are the orientation angles for suspending fibers. This approach is

applied for the remainder of this study.

Figure 3.8 to figure 3.16 show the φ distribution, with different aspect ratio,

volume fraction and bending ratio BR for η depicted in figure 3.2, figure 3.3 and

figure 3.4. For suspensions with the same volume concentration and fiber aspect

ratio, decreasing bending ratio (more flexible fiber), the φ distribution becomes flatter

showing that the suspending fibers are mostly oriented away from the xz–plane, thus

increasing the suspension shear viscosity.

Also the asymmetry of the φ distribution, observed in the small BR range, in-

dicates that the fiber–fiber mechanical interaction and fiber deformation are present

at this regime. The consequences of this observation will be discussed further below.
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It can also been seen in figure 3.8 to figure 3.16 that BR has stronger impact on

more concentrated suspensions having the same fiber aspect ratio. For example, in

the case of suspensions with fiber aspect ratio rp = 16 at the same bending ratio

BR = 0.29, the fiber orientation distribution p(φ) of the suspension with higher vol-

ume concentration is more flat and asymmetric as shown in figure 3.8, figure 3.9 and

figure 3.10. Same pattern can be observed for suspensions with aspect ratio rp = 32

and 52. This trend also causes the suspension’s relative viscosity η to increase with

fiber concentration as shown in figure 3.2, figure 3.3 and figure 3.4.

In figure 3.17, figure 3.18 and figure 3.19, the average number of contact points

per fiber 〈nc〉 is plotted as a function of the bending ratio BR for the same cases

depicted in figure 3.2, figure 3.3 and figure 3.4. Mean values were taken for 〈nc〉,

by time averaging over one orbit period after preconditioning. The decrease of the

bending ratio BR leads to the increase of 〈nc〉, except in figure 3.17, for the very

concentrated suspension with fiber volume fraction cvf = 0.124; 〈nc〉 increases first

and then decreases from a very high value (∼ 8). As 〈nc〉 increases, fibers interact

more frequently with increased contribution to the shear stress. The suspension shear

viscosity increases with 〈nc〉.

Fiber–fiber mechanical contacts can affect the suspension’s microstructure and

rheology in two ways: First, the contacts can change the Jeffery’s orbit of the sus-

pending fibers, and change the orientation distribution of the fibers, and consequently

change the rheological properties of the suspension. Second, the lubrication force and

contact force associated with fiber–fiber interaction will increase the suspension shear

stress, and increase the relative viscosity of the fiber suspension. Koch and coworkers

[74, 101, 112] have found that mechanical contacts can decrease the fiber rotation

period. This is easy to understand, since based on Jeffery’s equation (4), fiber spends

most of the time in the positions that are close to the xz–plane as shown in figure

1.1. However, fiber–fiber interactions will push the fiber away from these positions.
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This change on the fiber flipping decreases the time that the fiber spends around

the xz–plane, changes the orientation distribution of the suspending fiber and the

suspension rheology.

Figure 3.1 shows ten different combinations of fiber–fiber contact. In all cases,

the fiber on the left is stationary and the fiber on the right is moving with the relative

velocity Urel. In the first six cases, the interaction interface is close to a point, but

in the last four cases, the region of contact is a straight or curved line. The relative

motions in these cases are also very different. In (a), (c), (e), (g), the relative motion

is normal to the surface, and in (b), (d), (f), (h), the surfaces are in shear. In the real

experiments and simulations, the situation could be even more complicated, especially

for flexible fiber suspensions as shown in cases (i) and (j), which have different local

curvature for fibers with different BR. The relative position and motion could be

the combination of these example cases. In different cases, the models for interaction

forces should be different.

One limitation of the current flexible fiber model is that, it treats different kind

of contacts in the same manner, the criteria of the onset of contact are the same, the

lubrication force and contact force are only depend on the shortest distance and the

relative velocity between two contacting fibers. Another limitation is that, the number

of contacts between two fibers is only counted once in the simulation. However, for

flexible fiber suspensions, two neighboring fibers could have more than two contact

points. The current contact model also does not include multi–body contacts. The

last two limitations can strongly affect the result of 〈nc〉, especially in the case of

very concentrated suspension with very flexible suspending fibers. In the cases of

BR = 0.04, 0.11, 0.42, and cvf = 0.124, as shown in figure 3.17, 〈nc〉 is under

estimated in these situations. These limitations have been explained in section § 5.2.

The fiber–fiber interaction model could be an interesting subject in the future study.

The plots of 〈nc〉 also confirm the previous observation that the relative viscosity
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Figure 3.1: Ten different cases of fiber–fiber contact.
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η of the flexible fiber suspensions increases with fiber aspect ratio. For example, for

suspensions having volume fraction cvf = 0.018, 〈nc〉 increases from 0.78 to 1.25 for

rp = 16 as shown in figure 3.17, from 1.03 to 1.97 for rp = 32 as shown in figure 3.18

and from 1.00 to 2.13 for rp = 52 as shown in figure 3.19. For longer flexible fiber,

decreasing bending ratio will make it easier to contact with its neighbors.
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3.1.1 Relative viscosity η
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Figure 3.2: The relative shear viscosity η vs. bending ratio BR. Fiber aspect ratio
rp = 16, volume fraction cvf = 0.018, 0.053 and 0.124.
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Figure 3.3: The relative shear viscosity η vs. bending ratio BR. Fiber aspect ratio
rp = 32, volume fraction cvf = 0.018, 0.035 and 0.053.
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Figure 3.4: The relative shear viscosity η vs. bending ratio BR. Fiber aspect ratio
rp = 52, volume fraction cvf = 0.005, 0.018 and 0.030.
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Figure 3.5: Normalized relative viscosity η/ηrigid vs. fiber bending ratio BR for
flexible fiber suspensions. Fiber aspect ratio rp = 16, volume fraction cvf = 0.018,
0.053 and 0.124. The solid line (—), dash line (- - -) and dot line (· · · ) are the
corresponding curve–fitting results.
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Figure 3.6: Normalized relative viscosity η/ηrigid vs. fiber bending ratio BR for
flexible fiber suspensions. Fiber aspect ratio rp = 32, volume fraction cvf = 0.018,
0.035 and 0.053. The solid line (—), dash line (- - -) and dot line (· · · ) are the
corresponding curve–fitting results.
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Figure 3.7: Normalized relative viscosity η/ηrigid vs. fiber bending ratio BR for
flexible fiber suspensions. Fiber aspect ratio rp = 52, volume fraction cvf = 0.005,
0.018 and 0.030. The solid line (—), dash line (- - -) and dot line (· · · ) are the
corresponding curve–fitting results.
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3.1.2 Fiber orientation distribution p(φ)
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Figure 3.8: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 16, volume fraction cvf = 0.018.
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Figure 3.9: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 16, volume fraction cvf = 0.053.
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Figure 3.10: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 16, volume fraction cvf = 0.124.
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Figure 3.11: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 32, volume fraction cvf = 0.018.
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Figure 3.12: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 32, volume fraction cvf = 0.035.
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Figure 3.13: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 32, volume fraction cvf = 0.053.
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Figure 3.14: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 52, volume fraction cvf = 0.005.
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Figure 3.15: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 52, volume fraction cvf = 0.018.
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Figure 3.16: The φ distribution for different bending ratio BR. Fiber aspect ratio
rp = 52, volume fraction cvf = 0.030.
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3.1.3 Average number of contact points per fiber 〈nc〉
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Figure 3.17: The average number of contact points per fiber 〈nc〉 vs. bending ratio
BR. Fiber aspect ratio rp = 16, volume fraction cvf = 0.018, 0.053 and 0.124.
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Figure 3.18: The average number of contact points per fiber 〈nc〉 vs. bending ratio
BR. Fiber aspect ratio rp = 32, volume fraction cvf = 0.018, 0.035 and 0.053.
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Figure 3.19: The average number of contact points per fiber 〈nc〉 vs. bending ratio
BR. Fiber aspect ratio rp = 52, volume fraction cvf = 0.005, 0.018 and 0.030.
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3.2 First normal stress difference

In this section, the dependence of the first normal stress differenceN1 on the fiber stiff-

ness BR and fiber volume fraction cvf is investigated. First, the simulation results are

compared with experimental results from the literature as shown in figure 3.20. Pet-

rich et al. [98] and Carter [25] performed experiments in semi–dilute and concentrated

regimes with results showing similar patterns with some discrepancy. Petrich et al.

also measured the average value of (〈px3py〉 − 〈py3px〉) and calculated the Batchelor’s

first normal stress difference NB
1 by using equation (13), as shown in figure 3.20. The

value of NB
1 computed by Petrich et al. is much lower than the experimental result.

The discrepancy increases with fiber concentration. As previously discussed, Batch-

elor’s theory only includes hydrodynamic contributions, but in the semi–dilute and

concentrated regimes, non–hydrodynamic interactions and fiber–fiber interactions be-

come important. Present simulation results are more close to Carter’s experimental

results with the same discrepancy compared to Batchelor’s solutions.

Based on the following relation, Carter [25] predicts the first normal stress differ-

ence for rigid fiber suspensions.

NC
1

µγ̇
∝ cvfrp

2

ln(2rp)− 1.8
〈sin(2φ)〉 . (84)

He assumes that 〈sin(2φ)〉 ∝
√

1/rp, and equation (84) can be written as

NC
1

µγ̇
= Kc

cvfrp
3/2

ln(2rp)− 1.8
, (85)

where Kc is a constant to be determined experimentally. Different investigators ap-

plied Carter’s model to their normal stress measurements [25, 73, 54, 132, 98, 106, 71].

These experimental data fall within a range for Kc from 0.04 to 0.32, although no

clear relation between Kc and variables such as fiber volume fraction and aspect ra-

tio has been discovered. We also implemented Carter’s formula with our simulation

results with Kc = 0.08, same as Petrich et al. [98] (Kc = 0.08) and close to Keshtkar

et al. [71] (Kc = 0.1± 0.01) in their studies, as shown in figure 3.20.
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Carter’s equation overpredicts the first normal stress difference in the dilute and

semi–dilute regimes, most likely because the assumption of the 〈sin(2φ)〉 is not correct

in those regimes. This was confirmed by Lindstrom and Uesaka [83] who showed that

〈sin(2φ)〉 is proportional to cvf , not
√

1/rp in the dilute regime. It will continue to

increase with the volume fraction and, in the concentrated regime, 〈sin(2φ)〉 becomes

a constant and proportional to
√

1/rp. The results from Carter’s formula become

more accurate as volume concentration increases. The same trend is also observed

when comparing Carter’s formula with our simulation results.

Figure 3.21, figure 3.22 and figure 3.23 show the effect of fiber flexibility on the

non–dimensional fiber normal stress difference for fibers with aspect ratio rp = 16, 32

and 52. These results show that an increase in fiber volume fraction leads to an in-

crease of the first normal stress difference, and higher volume fraction will cause more

fiber–fiber interaction and consequently increase N1. A surprising finding, however, is

that for suspensions that have the same fiber volume fraction, the first normal stress

difference will decrease with decreasing bending ratio until BR ∼ 1 and will then

increase with the decreasing BR. A similar trend is also found from the experimental

data of Keshtkar et al. [71]. The physical explanation for these simulation results

can be provided with aid from Batchelor’s theory.

Based on the spherical coordinate system, as shown in figure 1.1, (13) becomes

NB
1 = µfiberγ̇

(〈

px
3py

〉

−
〈

py
3px

〉)

= −µfiberγ̇

4

(〈

sin4θsin4φ
〉)

. (86)

Equation (86) shows that if the suspension has no direct physical contact between

fibers and if there is no fiber deformation (rigid fiber), the fiber orientation distribution

p(φ) would necessarily be symmetric about xz–plane. Therefore, NB
1 = 0, since it

is an odd function of py. In other words, if direct contact between fibers exists or if

fibers are deformable, NB
1 will not vanish. Figure 3.8 to figure 3.16 clearly show that

for decreasing bending ratio BR (more flexible fiber), the mean orientation angle 〈φ〉

becomes slightly less than π/2, 〈sin4φ〉 becomes a small negative value, and this small
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asymmetry of the fiber orientation distribution makes NB
1 become a positive value

based on (86).

On the other hand, the orientation distribution of θ is also very important for the

first normal stress difference, as shown in equation (86). NB
1 increases with θ, where

θ is directly related to the orbit constant Cb, and Cb can be calculated numerically

for every fiber with equation (5). Figure 3.24, figure 3.25 and figure 3.26 show the

relation between the mean orbit constant 〈Cb〉 and the fiber bending ratio.

Based on bending ratio BR and equation (86), the relation between θ, p(φ) and

NB
1 can be divided into two regimes. When BR > 1, the suspending fibers are rigid

or slightly deformable. The suspensions have similar fiber orientation distribution,

p(φ), as shown in figure 3.8 to figure 3.16 and the orientation angle θ is the main

factor for changing NB
1 . Decreasing BR reduces the orientation angle θ and the

mean orbit constant 〈Cb〉. NB
1 decreases with decreasing BR. When BR < 1, the

suspending fibers become flexible. Both θ and p(φ) become important factors for NB
1 .

In this regime, the suspending fibers are more randomly oriented and 〈Cb〉 increases

with decreasing bending ratio, 〈Cb〉 ∼ 0.45 when BR → 0. At the same time, the

fiber orientation distribution p(φ) becomes more asymmetric and NB
1 increases with

decreasing BR.

It is important to note that equation (86) only includes the hydrodynamic con-

tributions from the suspension, and does not include non–hydrodynamic interactions

and fiber–fiber interactions. So the first normal stress difference, shown in figure 3.21,

figure 3.22 and figure 3.23, is not strictly proportional to the orbit constant Cb in fig-

ure 3.24, figure 3.25 and figure 3.26, even if they have the same fiber orientation

distribution p(φ).
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Figure 3.20: The non–dimensional first normal stress difference N1/(µγ̇) as a func-
tion of nL2D for rigid fiber suspensions. The open triangles (△) are the experiment
data of Carter [25] and the open upside–down triangles (▽) are the experiment data
of Petrich et al. [98]. The solid line (—) is the prediction of Carter’s model, equation
(85), with Kc = 0.08. The dash line (- - -) is the Batchelor’s first normal stress
difference NB

1 , equation (13), calculated by Petrich et al. [98]. The solid squares (�)
are the simulation results from present LBM with EBF.
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3.2.1 Non–dimensional first normal stress difference N1/(µγ̇)
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Figure 3.21: The non–dimensional first normal stress difference N1/(µγ̇) vs. fiber
bending ratio BR for flexible fiber suspensions. Fiber aspect ratio rp = 16, volume
fraction cvf = 0.018, 0.053 and 0.124.
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Figure 3.22: The non–dimensional first normal stress difference N1/(µγ̇) vs. fiber
bending ratio BR for flexible fiber suspensions. Fiber aspect ratio rp = 32, volume
fraction cvf = 0.018, 0.035 and 0.053.
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Figure 3.23: The non–dimensional first normal stress difference N1/(µγ̇) vs. fiber
bending ratio BR for flexible fiber suspensions. Fiber aspect ratio rp = 52, volume
fraction cvf = 0.005, 0.018 and 0.030.
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3.2.2 Mean orbit constant 〈Cb〉
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Figure 3.24: The mean orbit constant 〈Cb〉 vs. fiber bending ratio BR for flexible
fiber suspensions. Fiber aspect ratio rp = 16, volume fraction cvf = 0.018, 0.053 and
0.124.
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Figure 3.25: The mean orbit constant 〈Cb〉 vs. fiber bending ratio BR for flexible
fiber suspensions. Fiber aspect ratio rp = 32, volume fraction cvf = 0.018, 0.035 and
0.053.
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Figure 3.26: The mean orbit constant 〈Cb〉 vs. fiber bending ratio BR for flexible
fiber suspensions. Fiber aspect ratio rp = 52, volume fraction cvf = 0.005, 0.018 and
0.030.
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CHAPTER IV

PLATELET SIMULATION

4.1 Background

Bileaflet mechanical heart valves (BMHVs) have been widely used to replace native

valves. Unfortunately, the design of bileaflet mechanical heart valves produces flow

fields that may cause damage to blood elements, especially in the hinge area. Ex-

perimental work by Fallon [43] proved that channel geometry has a strong impact

on platelet activation. In her thesis [43], by measuring the Thrombin–Antithrombin

III (TAT) concentration of blood flow through the channels with different geometries

and sizes, she concluded that for the small channels, size is more important to TAT

formation than the geometry, but for the larger channels, the geometry play an im-

portant role. High fidelity simulations of the valve flow fields throughout the cardiac

cycle are required to improve and refine existing valve designs, so as to ultimately

develop BMHVs with minimal thromboembolic complications.

The objectives of this study are to analyze the flow properties for different channel

geometries, and choose an appropriate blood damage index model. The new lattice

Boltzmann method with external boundary force (LBM–EBF) simulation can help

researchers further understand the cause of blood damage, and improve the design to

reduce the adverse hemodynamic effects of valves that cause platelet activation and

damage blood elements.

It has been established in the previous studies [123, 125] that hemodynamic shear

stress is a primary biomechanical trigger for thromboembolic events . It is also well

known that exposure time to shear stress is a critical parameter for platelet activation

[50, 76, 114, 40, 96]. Several blood damage index models have been presented and
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used in previous studies as a measure of blood damage. With a linear shear stress–

exposure time model [40], the cumulative effects of shear stress and exposure time of

a platelet can be computed as

BDID ≡ 1

n

n
∑

i=0

τi ·∆ti, (87)

where BDID is the blood damage index, τi is the principal surface shear stress and

∆ti is the exposure time of platelet i.

Previous studies, however, have shown that the shear stress threshold for platelet

activation is independent of exposure time [66]. Tambasco and Steinman [114] in-

cluded a threshold shear stress parameter, in the linear BDI model by only consider-

ing platelets that have experienced high shear stress. Tambasco and Steinman’s BDI

model is defined as

BDIT ≡ 1

n

n
∑

i=0

τ ∗i ·∆t∗i , (88)

where BDIT is the blood damage index, τ ∗i is the principal shear stress above the

threshold and ∆t∗i is the exposure time. Tambasco and Steinman estimated the

threshold stress for platelet activation to be 105 dyn/cm2. The same threshold value

was used in this study.

In the two afore mentioned models (equations (87) and (88)), the relationship

between surface shear stress, exposure time and BDI value is linear. Other researchers

found the actual relationship to be more complex. Wurzinger et al. [124] measured

the amount of cytoplasm enzyme (LDH) released by platelets (which is proportional

to the level of platelet activation) using a Couette–viscometer. Giersiepen et al. [50]

derived a model for the blood damage index from the experimental results, given by

BDIG ≡ 1

n

n
∑

i=0

τ 3.075i ·∆t0.77i . (89)

One of the objectives of this research is to evaluate and compare these three

different BDI models. In this study, we use a recently developed numerical method
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[122, 121] to simulate flow with large numbers of platelets and calculate the BDI

value for different geometries. By comparing the simulation results with existing

experimental results [43], we can choose an appropriate blood damage index model

for future numerical simulations.

4.2 Results

The platelets are modeled as ellipsoidal particles and are assumed to be neutrally

buoyant in the suspending plasma. To numerically simulate the flow with platelets

and to compare with Fallon’s experiments [43], 40 platelets are released evenly along

the radius of the channel with random azimuth angle at the inlet in the same channel

geometries used in the experiments. By computing and recording the maximum shear

stress on the platelet surface and the exposure time, three different BDI values are

calculated for each platelet. For each platelet, the BDI values are weighted with the

local flow rate at its initial position and added accordingly for each channel.

4.2.1 Experimental setup

In Fallon’s experiments [43], four different geometries were studied with small (400

µm) and large (800 µm) minimum diameters as shown in figure 4.1. In the experi-

ments, the channels were placed in a chamber and the pressure upstream of the orifices

was maintained by a Biomedicus (Biomedicus TX50, Minneapolis, MN) centrifugal

bypass pump at 120 mmHg (+/- 5 mmHg). Two 0.5 ml samples were taken at 0, 15,

30, 45 and 60 minutes for the TAT, PF4 and hemolysis assays. The TAT concentra-

tions for all 8 channels after 60 minutes are shown in figure 4.2 and the differences

between the channels are very clear. figure 4.2 shows that all the channels with

small minimum diameter of 400 µm (odd–numbered channels) have approximately

the same TAT concentration. However, the channels with a minimum diameter of

800 µm (even–numbered channels) show differences in TAT concentration between the

geometries. In the numerical simulations, we used the same setup and flow conditions
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to compare the computational results with the experimental results.

4.2.2 Numerical simulation results

Figure 4.3, 4.4 and 4.5 show the BDIG, BDIT and BDID values for all 8 chan-

nels, respectively. The platelet surface shear stress is divided by the threshold shear

stress, τthres = 105dyne/cm2 and exposure time is divided by 1 sec, so the BDI

values plotted are non–dimensional parameters. These plots show that the profiles

of BDIT and BDIG are very different in comparison to the experiments. In both

models, the non–dimensional BDI values for channels with larger internal diameter

(even–numbered channels) are much less compared to channels that have the same

geometry but smaller internal diameter (odd–numbered channels). However, the re-

sult of BDID model is very similar to the experimental results as shown in figure 4.5,

except for channels 4 and 8. One possible reason for this deviation is that the cur-

rent tracking algorithm cannot count the platelets that enter the recirculation zone

in the experiments. All 40 platelets that were released at the inlet went through the

domain without entering the recirculation zone. However, in Fallon’s experiments

[43], the platelets entered and stayed in the recirculation zone for a longer period of

time compare to platelets that went through the channel. Since the shear stress in

the recirculation zone is high, the BDI value of these platelets will strongly affect the

average BDI value of the channel. This difference becomes significant for channels 4

and 8, since they have a sharp transition geometry with larger internal diameter and

they have larger recirculation zones. Quantifying the contributions from this effect is

an ongoing study.

In figure 4.5, the BDID value of channel 4 is higher than channel 2. These

two channels have same dimensions except that channel 4 has a sharp 90 degree

angle leading into the smaller internal diameter, and channel 2 has a much smoother

transition to converge to the internal diameter. The sharper angle leads to higher
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shear stresses, hence the larger damage in channel 4. Channel 8 and channel 6 have

a similar situation except their geometry is diverging instead of converging.

On the other hand, all four channels with smaller internal diameter (odd–numbered

channels) have similar and significantly larger BDI value than the channels with larger

internal diameter (even–numbered channels). Based on these simulation results, it

is evident that for the small channels, size is more important to blood damage. For

channels with larger diameter, the geometry does play an important role. It was also

found that large recirculation zones or sudden shape transitions will increase platelet

activation.

4.3 Discussion

In this section we provide a thorough discussion of the BDI models and the results.

The first part is the comparison and physical explanation of three different BDI

models; the results and the limitations of the BDIG (Giersiepen et al. [50]), BDID

(Dumont et al. [40]) and BDIT (Tambasco and Steinman [114]) models will be

discussed here. The second part is the discussion and the suggestions about the

numerical procedure that calculates the BDI value for a channel or a BMHV.

4.3.1 BDI models

In 1980’s, Wurzinger and coworkers [123, 124, 125] conducted detailed experiments in

blood to establish the relation between blood damage, shear stress and exposure time.

By measuring the amount of cytoplasm enzyme released by platelets, they found that

this relationship was not linear. Based on these observations, a mathematical corre-

lation to calculate the blood damage level was developed by Giersiepen et al. [50] as

shown by equation (3). It was argued that the platelet shear stress was more impor-

tant than the exposure time, and high shear stress will dominate the result of this

equation. In our simulations, the BDIG of the platelet which experienced shear stress

of 200 dynes/cm2 is approximately 8000 times larger than platelet that experienced
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a shear stress of 10 dynes/cm2. This non–linear relation caused the significant differ-

ences between the BDI value of small channels (odd–numbered channels) and large

channels (even–numbered channels). One reason for this large difference is that, the

exponent constant in this model is based on experiments that have very different flow

conditions. In their experiments [123, 124, 125], the platelet activation was investi-

gated in a viscometer under constant shear stress. But in Fallon’s experiments and

in our simulations, the shear stresses vary significantly from the wall to the center

of the channel. This difference can change the value of the exponent constant in the

BDI model.

Bluestein and coworkers [15, 40, 96] have also conducted extensive research on

shear-related platelet activation. They defined the platelet activation state (PAS)

to model the blood damage under unsteady flow conditions. Grigioni et al. [57]

developed a mathematical model to evaluate the red blood cell damage. Based on

this model, Nobili et al. [96] calculated the platelet activation and compared their

simulation results with the experimental results. In this model, a nonlinear least–

square fitting method was applied to obtain the model parameters. The platelet

shear stress history in the previous cycle was also counted in the PAS model by a

damage accumulation model. Dumont et al. [40] applied a similar model without

the damage accumulation to compare the hemodynamic performance of two BMHVs.

The model is given by equation (87), which is the BDID model. In the present

simulation, this model gives the closest pattern compare to the simulation result.

The limitation of the BDID model, as pointed out by Tambasco and Steinman

[114], is that, a platelet should only be activated when the platelet shear stress is

higher than a threshold value. In the BDIT model given by equation (88), this value

is defined as the threshold shear stress and they used a value of 105 dynes/cm2. The

physical definition of the threshold shear stress is that, if platelet surface shear stress

is lower than this value, it should not be activated and the activation of the platelets is
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irrelevant with respect to the exposure time. The same threshold value is used in the

current model. Based on the simulation results, as shown in figure 4.4, this value is too

high and most shear stresses of platelets in large channels (even-numbered channels)

were filtered out. Early experiments [20, 119, 120] have shown platelet secretion

and aggregation when the shear stress was higher than 50 dynes/cm2. Recent studies

[62, 89, 94, 66] have demonstrated that at high level of shear stress (> 100 dynes/cm2),

platelets have aggregation and shedding of microparticles from their membrane. The

appropriate threshold shear stress should lie between 12 dynes/cm2 (the physiological

shear stress) and 105 dynes/cm2 (at which significant platelet activation is observed).

4.3.2 Numerical procedure

We want to emphasize here that one objective of this research is to choose an ap-

propriate BDI model to optimize the design of BMHVs. It comes to our attention

that all current models are Lagrangian–based models for platelets, and most of these

models require the damage accumulation model to estimate the damage caused by

the platelet shear stress history. This is correct for estimating the activation state of

each platelet. However, it can cause problems when using these BDI models to eval-

uate the design of a channel or BMHV, since the initial conditions, such as the initial

position, orientation and releasing time of the platelets, will affect the BDI value of

the channel. For example, figure 4.6 shows a path line in a pressure driven channel

flow. The BDI values from any existing BDI model will be different for platelets that

are released at points A, B, C and D. Moreover, for the BDI models with damage

accumulation model, the shear stress distribution from point C to point D is always

more important than the distribution from point A to point B. In another words, the

downstream shear stress distribution will always be more important than upstream

distribution in these BDI models. However, the BDI value of a channel should only

depend on the channel geometry and flow conditions, such as pressure gradient, and

106



it should NOT depend on the initial condition of the released tracking particles.

The presence of the recirculation zone makes the situation even more complex. If

the platelets are only released at the inlet, these particles will not enter the recircula-

tion zone (assuming no recirculation zone at the inlet of the fluid domain). Since the

shear stress in the recirculation zone is high, and the platelets trapped in the zone

experience a longer exposure time, this part of the blood damage is expected to be

very important for the BDI calculation.

One solution to fix these problems is to calculate the space averaged shear stress

of the channel. However, the amount of the blood damage should also depend on

the number of platelets that pass through this region. Here we propose a universal

approach: The platelets will be released uniformly in the entire fluid domain to make

sure that the recirculation zones are included in the BDI calculation. A BDI model

without the damage accumulation model will be applied. The BDI value of every

platelet will be weighted by the local platelet concentration at the initial position,

since in the whole blood flow, the platelets are pushed toward the wall [1, 130, 131]. In

a given amount of time (1–2 cardiac cycles), the BDI value of the channel with certain

pressure gradient should increase, similar to the plot shown in figure 4.7. Channel

c1 which has a higher pressure gradient should have a higher BDI value compare to

channel c2 which has same geometry but a lower pressure gradient. This numerical

procedure can be used to assess the blood damage in BMHV hinges under different

flow conditions (pressure gradient, unsteady flow, etc).
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Figure 4.1: Channel diagrams.
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Figure 4.2: Fallon’s experiment results of TAT concentration for all the channels at
60 minutes. (From Fallon [43])
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Figure 4.3: BDIG for all 8 channels, LBM-EBF simulation results.
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Figure 4.4: BDIT for all 8 channels, LBM-EBF simulation results.
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Figure 4.5: BDID for all 8 channels, the left y axis is for the black blocks which are
the LBM-EBF simulation results and the right y axis is for the red blocks which are
the TAT concentration from Fallon’s experiment as shown in figure 4.2.
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Figure 4.6: A path line in a pressure driven channel flow.
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Figure 4.7: Example of the BDI values for two different channel flows.
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CHAPTER V

CONCLUSIONS AND FUTURE RECOMMENDATIONS

5.1 Conclusions

In this research, a 3D numerical method is developed to simulate the microstructure

and the rheological properties of flexible particle suspensions. Fundamental under-

standing of these flows is necessary for a full adhesion model that will be useful in

engineering applications. The investigation into flows having a large number of de-

formable particles has shown the importance of particle deformation on the rheology

of suspensions. The methodology developed here may be extended to more complex

particle geometries and flow conditions. Thus, this research fits into the greater ob-

jective of prediction and optimization in engineering and clinical applications. The

versatility of the coupled LBM–EBF method makes it attractive to use for investi-

gating a wide range of applications.

We have presented the lattice–Boltzmann with external boundary force method

for fluid–solid interaction problems. The novel application to the lattice Boltzmann

method provides an efficient and more stable computational tool compared to the

conventional LBM with SBB, particularly for large number of deformable particles

suspended in viscous flow. By coupling this with the lattice–spring model, one can

easily re–mesh the solid for different geometries. We can also prescribe the motion of

the deformable particle. The operations in LBM with EBF are local; it can be easily

programmed for parallel machines. This new method takes into account both long

and short range hydrodynamic interactions and contact forces. The method has been

validated by comparing the 3D computational results with experimental results and

theoretical solutions. With this method, the concentration of suspensions can range

114



from dilute to concentrated volume fraction, deformable particles may have different

density than the fluid and each particle can have different elastic properties with no

additional demand on computational time.

The simulations seem to slightly over predict the shear viscosity in the dilute

regime as compared to Blakeney’s data, as shown in figure 2.17. This could be due

to the unbounded periodic shear layer used in the simulations as compared with the

wall–bounded experimental results. This effect may result in a small discrepancy in

the magnitude of relative viscosity in the dilute regime. However, in the case of higher

volume fraction suspension flow, considered in figure 2.18, the magnitude of relative

viscosity is much higher, masking the small deviations between the experimental and

computational results.

The flexible fiber suspension model proposed by [121] is used to simulate suspen-

sions of non-Brownian fibers in simple shear flow. The results agree well with data

from experimental and theoretical studies. It is shown that the fiber stiffness has

strong impact on suspension rheology. The relative viscosity is well predicted by a

curve–fitting relation. It can be used for calculating the relative viscosity of flexible

fiber suspension from the result of rigid fiber suspension. Also, the effect of fiber stiff-

ness on the first normal stress difference based on the fiber orientation distribution

and orbit constant is explained. The influence of fiber stiffness on the fiber orientation

distribution and orbit constant is a major contributor to the variation in rheological

properties.

In chapter § 4 the effect of 3D channel geometry on the shear–induced platelet

activation and aggregation is modeled by using LBM–EBFmethod. Platelets can have

different shapes, healthy platelets are ellipsoidal disk shape and activated platelets

have rounded shape with irregular tassels, so the unsteady shear stress sensed by

platelets is not the same as a spherical particle. Therefore, it is imperative to develop

a particle–level numerical method with two-way coupling between fluid–solid phases.
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The BDI value computed for different channels are compared to previously pub-

lished experimental data [43]. Comparison of our simulations with Fallon’s experi-

ments shows a similar pattern and shows that Dumont’s BDI model [40] is more ap-

propriate for blood damage investigation. Furthermore, the simulations come to the

same conclusion as Fallon’s experiments [43], that channels with sharp contraction–

expansion will have larger recirculation areas causing elevated BDI values.

The objective is to understand the fundamental principle regarding the impact

of different design parameters on hinge flow fields. A new numerical procedure is

proposed in this study to include the recirculation zones in the BDI calculation and

to eliminate the effects of initial conditions. By investigating the effect of hinge area

geometry on BDI value, we intend to use this multiscale computational method to

optimize the design of BMHVs.

5.2 Future recommendations

The coupled lattice–Boltzmann external boundary force method presented in this

work has been shown to be successful in simulating thousands of suspending flexible

fibers, RBCs and platelets and producing continuum–scale physics. A number of

physiologic problems and engineering applications are within the scope of this method.

While most of the simulations presented in this work are performed in simple shear

flow for comparison with experiments, extensions may be made to more complex

particle geometries and flow conditions. The ease of creating new shapes within the

lattice–spring model allows for the simulation of particles and flows with irregular

boundaries.

Recent studies have shown that the lubrication force is not sufficiently strong

to prevent fiber–fiber contacts. Contact force becomes an important parameter for

fiber suspension simulations. Contact force models are readily available and can be

easily implemented, since all needed information and function is presented in the
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simulations. The effect of contact force on suspension microstructure and rheology

could be an interesting subject, especially in concentrated regimes.

Although the EBF method is used in conjunction with the lattice–spring model for

deformable particles in this application, it is a general coupling method for fluid–solid

interaction simulations. Coupling the lattice–Boltzmann method with the finite–

element method by using EBF is currently under development. The current code

is written based on the OpenMP interface. To further improve the efficiency and

performance and to run simulations at large cluster, algorithm optimization and full

parallelization based on the MPI interface is necessary.
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